cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059849 Number of pairs of partitions of {1,2,...,n} whose meet is the partition {{1}, {2}, ..., {n}}.

Original entry on oeis.org

1, 1, 3, 15, 113, 1153, 15125, 245829, 4815403, 111308699, 2985997351, 91712874487, 3189130896077, 124366296990757, 5395176819674205, 258547307299130037, 13603419571939001827, 781604484498111072195, 48806254671145521802863, 3298007680091577596528415
Offset: 0

Views

Author

E. R. Canfield (erc(AT)cs.uga.edu), Feb 26 2001

Keywords

Examples

			a(2) = 3 because there are two partitions of {1,2} and of the four possible pairs, only the pair ( {{1,2}}, {{1,2}} ) fails to have meet equal to {{1},{2}}.
		

Crossrefs

Cf. Bell numbers A000110. Also A007311 and Stirling numbers of the second kind, A000225.

Programs

  • Mathematica
    a[n_] := Sum[StirlingS1[n, k]*BellB[k]^2, {k, 0, n}]; Array[a, 20] (* Robert G. Wilson v, Jul 24 2018 *)
  • PARI
    /* From Vladeta Jovovic's formula: */
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
    {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)^2)}

Formula

E.g.f. M(x) satisfies the equation M(exp(x)-1) = Sum_{n>=0} (B_n)^2 * x^n/n!, where B_n is the n-th Bell number (A000110).
E.g.f.: Sum_{n>=0} exp( (1+x)^n - 2 ) / n!. - Paul D. Hanna, Jul 24 2018
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(k)^2. - Vladeta Jovovic, Oct 01 2003

Extensions

More terms from Vladeta Jovovic, Mar 04 2001

A357583 Triangle read by rows. Convolution triangle of the Bell numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 15, 14, 6, 1, 0, 52, 50, 27, 8, 1, 0, 203, 189, 113, 44, 10, 1, 0, 877, 764, 471, 212, 65, 12, 1, 0, 4140, 3311, 2013, 974, 355, 90, 14, 1, 0, 21147, 15378, 8951, 4440, 1790, 550, 119, 16, 1, 0, 115975, 76418, 41745, 20526, 8727, 3027, 805, 152, 18, 1
Offset: 0

Views

Author

Peter Luschny, Oct 05 2022

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 0,     1;
  [2] 0,     2,     1;
  [3] 0,     5,     4,    1;
  [4] 0,    15,    14,    6,    1;
  [5] 0,    52,    50,   27,    8,    1;
  [6] 0,   203,   189,  113,   44,   10,   1;
  [7] 0,   877,   764,  471,  212,   65,  12,   1;
  [8] 0,  4140,  3311, 2013,  974,  355,  90,  14,  1;
  [9] 0, 21147, 15378, 8951, 4440, 1790, 550, 119, 16, 1;
		

Crossrefs

Cf. A000110, A129247 (row sums), A007311, A357584 (central terms).

Programs

  • Maple
    # Using function PMatrix from A357368.
    PMatrix(10, combinat[bell]);

Formula

Conjecture: row polynomials are x*R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) + x*R(n-1,1)*R(1,k) for n > 1, k > 0 with R(1,k) = Bell(k) for k > 0. The same recursion seems to work for self-convolution of any other sequence. - Mikhail Kurkov, Apr 05 2025
Showing 1-2 of 2 results.