A060639
Number of pairs of partitions of [n] whose join is the partition {{1,2,...,n}}.
Original entry on oeis.org
1, 1, 3, 15, 119, 1343, 19905, 369113, 8285261, 219627683, 6746244739, 236561380795, 9356173080985, 413251604702069, 20215438754502217, 1087524296159855603, 63950948621703499839, 4089003767746536828183, 282970817307108139386841, 21107742616278461624923449, 1690957890908364634072451893
Offset: 0
E. R. Canfield (erc(AT)cs.uga.edu), Apr 16 2001
J(2) = 3 because there are two partitions of {1,2} and of the four pairs of partitions, only the pair ( {{1},{2}}, {{1},{2}} ) fails to have join {{1,2}}.
- Vincenzo Librandi, Table of n, a(n) for n = 0..325
- E. R. Canfield, Meet and join in the partition lattice, Electronic Journal of Combinatorics, 8 (2001) R15.
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014; Table 3.
- B. Pittel, Where the typical set partitions meet and join, Electronic Journal of Combinatorics, 7 (2000) R5.
- Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012.
Bell numbers:
A000110, Stirling numbers of the second kind:
A000225, number of pairs whose meet equals {{1}, {2}, ..., {n}}:
A059849.
-
list[n_] := Module[{t}, t = Table[BellB[k-1]^2/(k-1)!, {k, 1, n+1}]; CoefficientList[1+Log[O[x]^(n+1)+Sum[t[[i]] x^(i-1), {i, 1, Length[t]}]], x]];
list[17] Range[0, 17]! (* Jean-François Alcover, Nov 03 2018, from PARI *)
-
Bell(n)=round(suminf(k=0,k^n/k!)/exp(1))
list(n)=my(v=Vec(log(O(x^(n+1))+Polrev(vector(n+1,k,Bell(k-1)^2/(k-1)!)))));concat(1,vector(n,i,v[i]*i!)) \\ Charles R Greathouse IV, Mar 21 2012
A318393
Regular tetrangle where T(n,k,i) is the number of pairs of set partitions of {1,...,n} with meet of length k and join of length i.
Original entry on oeis.org
1, 1, 2, 1, 1, 6, 3, 8, 6, 1, 1, 14, 7, 48, 36, 6, 56, 44, 12, 1, 1, 30, 15, 200, 150, 25, 560, 440, 120, 10, 552, 440, 140, 20, 1, 1, 62, 31, 720, 540, 90, 3640, 2860, 780, 65, 8280, 6600, 2100, 300, 15, 7202, 5632, 1920, 340, 30, 1, 1, 126, 63, 2408, 1806
Offset: 1
The T(3,3,1) = 8 pairs of set partitions:
{{1},{2},{3}} {{1,2,3}}
{{1},{2,3}} {{1,2},{3}}
{{1},{2,3}} {{1,3},{2}}
{{1,2},{3}} {{1},{2,3}}
{{1,2},{3}} {{1,3},{2}}
{{1,3},{2}} {{1},{2,3}}
{{1,3},{2}} {{1,2},{3}}
{{1,2,3}} {{1},{2},{3}}
Tetrangle begins:
1 1 1 1 1
2 1 6 3 14 7 30 15
8 6 1 48 36 6 200 150 25
56 44 12 1 560 440 120 10
552 440 140 20 1
Cf.
A000110,
A000258,
A001247,
A008277,
A048994,
A059849,
A060639,
A181939,
A318389,
A318390,
A318391,
A318392.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
Table[Length[Select[Tuples[sps[Range[n]],2],And[Length[spmeet@@#]==k,Length[csm[Union@@#]]==j]&]],{n,6},{k,n},{j,k}]
A181939
Number of pairs of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}} and join is {{1,2,...,n}}.
Original entry on oeis.org
1, 1, 2, 8, 56, 552, 7202, 118456, 2369922, 56230544, 1552048082, 49080888144, 1756527398738, 70427165428648, 3136819046716266, 154090456510590632, 8296738497931578818, 487014208107376581984, 31018372994440588508642, 2134584265273475942046304
Offset: 0
Alexander Steinhardt (asteinh1(AT)hs-mittweida.de), Jens Schreiter (jschrei1(AT)hs-mittweida.de), Frank Simon, Apr 03 2012
For n = 2 there are exactly the following two pairs ({{1,2}},{{1},{2}}), ({{1},{2}},{{1,2}}) satisfying the imposed conditions.
- Alois P. Heinz, Table of n, a(n) for n = 0..325
- E. R. Canfield, Meet and join in the partition lattice, Electronic Journal of Combinatorics, 8 (2001) R15.
- B. Pittel, Where the typical set partitions meet and join, Electronic Journal of Combinatorics, 7 (2000) R5.
- Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 3.3. - _N. J. A. Sloane_, Jan 04 2013
-
with(combinat):
m:= proc(n) option remember; add(stirling1(n, k)*bell(k)^2, k=0..n) end:
a:= proc(n) option remember;
m(n) -add(binomial(n-1,k)*m(k)*a(n-k), k=1..n-1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 20 2012
-
m[n_] := m[n] = Sum[StirlingS1[n, k]*BellB[k]^2, {k, 0, n}]; a[n_] := a[n] = m[n] - Sum[ Binomial[n-1, k]*m[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
A318391
Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet of length k.
Original entry on oeis.org
1, 1, 3, 1, 9, 15, 1, 21, 90, 113, 1, 45, 375, 1130, 1153, 1, 93, 1350, 7345, 17295, 15125, 1, 189, 4515, 39550, 161420, 317625, 245829, 1, 381, 14490, 192213, 1210650, 4023250, 6883212, 4815403, 1, 765, 45375, 878010, 8014503, 40020750, 113572998, 173354508, 111308699
Offset: 1
The T(3,2) = 9 pairs of set partitions:
{{1},{2,3}} {{1},{2,3}}
{{1},{2,3}} {{1,2,3}}
{{1,2},{3}} {{1,2},{3}}
{{1,2},{3}} {{1,2,3}}
{{1,3},{2}} {{1,3},{2}}
{{1,3},{2}} {{1,2,3}}
{{1,2,3}} {{1},{2,3}}
{{1,2,3}} {{1,2},{3}}
{{1,2,3}} {{1,3},{2}}
Triangle begins:
1
1 3
1 9 15
1 21 90 113
1 45 375 1130 1153
1 93 1350 7345 17295 15125
-
Table[StirlingS2[n,k]*Sum[StirlingS1[k,i]*BellB[i]^2,{i,k}],{n,10},{k,n}]
-
row(n) = {my(b=Vec(serlaplace(exp(exp(x + O(x*x^n))-1)-1))); vector(n, k, stirling(n,k,2)*sum(i=1, k, stirling(k,i,1)*b[i]^2))}
{ for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
A318389
Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet {{1},...,{n}} and join of length k.
Original entry on oeis.org
1, 2, 1, 8, 6, 1, 56, 44, 12, 1, 552, 440, 140, 20, 1, 7202, 5632, 1920, 340, 30, 1, 118456, 89278, 31192, 6160, 700, 42, 1, 2369922, 1708016, 595448, 124432, 16240, 1288, 56, 1, 56230544, 38592786, 13214672, 2830632, 400512, 37296, 2184, 72, 1, 1552048082
Offset: 1
The T(3,2) = 6 pairs of set partitions:
{{1},{2},{3}} {{1},{2,3}}
{{1},{2},{3}} {{1,2},{3}}
{{1},{2},{3}} {{1,3},{2}}
{{1},{2,3}} {{1},{2},{3}}
{{1,2},{3}} {{1},{2},{3}}
{{1,3},{2}} {{1},{2},{3}}
Triangle begins:
1
2 1
8 6 1
56 44 12 1
552 440 140 20 1
7202 5632 1920 340 30 1
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
Table[Length[Select[Tuples[sps[Range[n]],2],And[Max@@Length/@spmeet@@#==1,Length[csm[Union@@#]]==k]&]],{n,5},{k,n}]
A318396
Number of pairs of integer partitions (y, v) of n such that there exists a pair of set partitions of {1,...,n} with meet {{1},...,{n}}, the first having block sizes y and the second v.
Original entry on oeis.org
1, 1, 3, 6, 15, 28, 64, 116, 238, 430, 818, 1426, 2618, 4439, 7775, 12993, 22025, 35946, 59507, 95319, 154073, 243226, 385192, 598531, 933096, 1429794, 2193699, 3322171, 5027995, 7524245, 11253557, 16661211, 24637859, 36130242, 52879638, 76830503, 111422013, 160505622
Offset: 0
The a(4) = 15 pairs of integer partitions:
4, 1111
22, 22
22, 211
22, 1111
31, 211
31, 1111
211, 22
211, 31
211, 211
211, 1111
1111, 4
1111, 22
1111, 31
1111, 211
1111, 1111
The a(4) = 15 combinatory separations:
1111<={1,1,1,1}
1112<={1,1,12}
1112<={1,1,1,1}
1122<={12,12}
1122<={1,1,12}
1122<={1,1,1,1}
1123<={1,123}
1123<={12,12}
1123<={1,1,12}
1123<={1,1,1,1}
1234<={1234}
1234<={1,123}
1234<={12,12}
1234<={1,1,12}
1234<={1,1,1,1}
Cf.
A000041,
A000110,
A001247,
A007716,
A008277,
A029894,
A049311,
A059849,
A116540,
A181939,
A265947,
A269134,
A318393,
A318394,
A327913.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
Table[Length[Select[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}],And@@UnsameQ@@@#[[2]]&]],{n,6}]
-
IsDom(p,q)=if(#q<#p, 0, my(s=0,t=0); for(i=0, #p-1, s+=p[#p-i]; t+=q[#q-i]; if(t>s, return(0))); 1)
a(n)={if(n<1, n==0, my(s=0); forpart(p=n, forpart(q=n, s+=IsDom(p,q), [1, p[#p]], [#p, n])); s)} \\ Andrew Howroyd, Oct 31 2019
-
\\ faster version.
a(n)={local(Cache=Map());
my(recurse(b, c, s, t)=my(hk=Vecsmall([b, c, s, t]), z);
if(!mapisdefined(Cache, hk, &z),
z = if(s, sum(i=1, min(s, b), sum(j=1, min(t-s+i, c), self()(i, j, s-i, t-j))),
if(t, sum(j=1, min(t, c), self()(b, j, s, t-j)), 1));
mapput(Cache, hk, z)); z);
recurse(n, n, n, n)
} \\ Andrew Howroyd, Oct 31 2019
A322442
Number of pairs of set partitions of {1,...,n} where every block of one is a subset or superset of some block of the other.
Original entry on oeis.org
1, 1, 4, 25, 195, 1894, 22159, 303769, 4790858, 85715595, 1720097275, 38355019080, 942872934661, 25383601383937, 744118939661444, 23635548141900445, 809893084668253151, 29822472337116844174, 1175990509568611058299, 49504723853840395163221, 2218388253903492656783562
Offset: 0
The a(3) = 25 pairs of set partitions (these are actually all pairs of set partitions of {1,2,3}):
(1)(2)(3)|(1)(2)(3)
(1)(2)(3)|(1)(23)
(1)(2)(3)|(12)(3)
(1)(2)(3)|(13)(2)
(1)(2)(3)|(123)
(1)(23)|(1)(2)(3)
(1)(23)|(1)(23)
(1)(23)|(12)(3)
(1)(23)|(13)(2)
(1)(23)|(123)
(12)(3)|(1)(2)(3)
(12)(3)|(1)(23)
(12)(3)|(12)(3)
(12)(3)|(13)(2)
(12)(3)|(123)
(13)(2)|(1)(2)(3)
(13)(2)|(1)(23)
(13)(2)|(12)(3)
(13)(2)|(13)(2)
(13)(2)|(123)
(123)|(1)(2)(3)
(123)|(1)(23)
(123)|(12)(3)
(123)|(13)(2)
(123)|(123)
Non-isomorphic representatives of the pairs of set partitions of {1,2,3,4} for which the condition fails:
(12)(34)|(13)(24)
(12)(34)|(1)(3)(24)
(1)(2)(34)|(13)(24)
Cf.
A000110,
A000258,
A001247,
A008277,
A059849,
A060639,
A181939,
A318393,
A322435,
A322437,
A322439,
A322440,
A322441.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
costabQ[s_,t_]:=And@@Cases[s,x_:>Select[t,SubsetQ[x,#]||SubsetQ[#,x]&]!={}];
Table[Length[Select[Tuples[sps[Range[n]],2],And[costabQ@@#,costabQ@@Reverse[#]]&]],{n,5}]
-
F(x)={my(bell=(exp(y*(exp(x) - 1)) )); subst(serlaplace( serconvol(bell, bell)), y, exp(exp(x) - 1)-1)}
seq(n) = {my(x=x + O(x*x^n)); Vec(serlaplace( exp( 2*exp(exp(x) - 1) - exp(x) - 1) * F(x) ))} \\ Andrew Howroyd, Jan 19 2024
A318392
Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join of length k.
Original entry on oeis.org
1, 3, 1, 15, 9, 1, 119, 87, 18, 1, 1343, 1045, 285, 30, 1, 19905, 15663, 4890, 705, 45, 1, 369113, 286419, 95613, 16450, 1470, 63, 1, 8285261, 6248679, 2147922, 410053, 44870, 2730, 84, 1, 219627683, 159648795, 55211229, 11202534, 1394883, 105714, 4662, 108, 1
Offset: 1
The T(3,2) = 9 pairs of set partitions:
{{1},{2},{3}} {{1},{2,3}}
{{1},{2},{3}} {{1,2},{3}}
{{1},{2},{3}} {{1,3},{2}}
{{1},{2,3}} {{1},{2},{3}}
{{1},{2,3}} {{1},{2,3}}
{{1,2},{3}} {{1},{2},{3}}
{{1,2},{3}} {{1,2},{3}}
{{1,3},{2}} {{1},{2},{3}}
{{1,3},{2}} {{1,3},{2}}
Triangle begins:
1
3 1
15 9 1
119 87 18 1
1343 1045 285 30 1
19905 15663 4890 705 45 1
-
nn=5;Table[n!*SeriesCoefficient[Sum[BellB[n]^2*x^n/n!,{n,0,nn}]^t,{x,0,n},{t,0,k}],{n,nn},{k,n}]
A322441
Number of pairs of set partitions of {1,...,n} where no block of one is a subset or equal to any block of the other.
Original entry on oeis.org
1, 0, 0, 0, 6, 60, 630, 9660, 192906
Offset: 0
The a(4) = 6 pairs of set partitions:
{{1,2},{3,4}} and {{1,3},{2,4}},
{{1,2},{3,4}} and {{1,4},{2,3}},
{{1,3},{2,4}} and {{1,2},{3,4}},
{{1,3},{2,4}} and {{1,4},{2,3}},
{{1,4},{2,3}} and {{1,2},{3,4}},
{{1,4},{2,3}} and {{1,3},{2,4}}.
Cf.
A000110,
A000258,
A001247,
A008277,
A059849,
A060639,
A181939,
A318393,
A321760 (unlabeled version),
A322435,
A322442.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
stabQ[u_]:=stabQ[u,SubsetQ];stabQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Tuples[sps[Range[n]],2],And[UnsameQ@@Join@@#,stabQ[Join@@#]]&]],{n,6}]
A318390
Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join {{1,...,n}} and meet of length k.
Original entry on oeis.org
1, 1, 2, 1, 6, 8, 1, 14, 48, 56, 1, 30, 200, 560, 552, 1, 62, 720, 3640, 8280, 7202, 1, 126, 2408, 19600, 77280, 151242, 118456, 1, 254, 7728, 95256, 579600, 1915732, 3316768, 2369922, 1, 510, 24200, 435120, 3836952, 19056492, 54726672, 85317192, 56230544, 1
Offset: 1
The T(3,3) = 8 pairs of set partitions:
{{1},{2},{3}} {{1,2,3}}
{{1},{2,3}} {{1,2},{3}}
{{1},{2,3}} {{1,3},{2}}
{{1,2},{3}} {{1},{2,3}}
{{1,2},{3}} {{1,3},{2}}
{{1,3},{2}} {{1},{2,3}}
{{1,3},{2}} {{1,2},{3}}
{{1,2,3}} {{1},{2},{3}}
Triangle begins:
1
1 2
1 6 8
1 14 48 56
1 30 200 560 552
1 62 720 3640 8280 7202
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
Table[Length[Select[Tuples[sps[Range[n]],2],And[Length[spmeet@@#]==k,Length[csm[Union@@#]]==1]&]],{n,6},{k,n}]
Showing 1-10 of 22 results.
Comments