cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007312 Reversion of g.f. (with constant term omitted) for partition numbers.

Original entry on oeis.org

1, -2, 5, -15, 52, -200, 825, -3565, 15900, -72532, 336539, -1582593, 7524705, -36111810, 174695712, -851020367, 4171156249, -20555470155, 101787990805, -506227992092, 2527493643612, -12663916942984, 63656297034920, -320914409885850, 1622205233276889
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(25, n -> combinat:-numbpart(n)); # Peter Luschny, Oct 05 2022
  • Mathematica
    nmax = 30; Rest[CoefficientList[InverseSeries[Series[Sum[PartitionsP[n]*x^n, {n, 1, nmax}], {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
    Rest[CoefficientList[InverseSeries[Series[-1 + 1/QPochhammer[x],{x,0,30}],x],x]] (* Vaclav Kotesovec, Jan 18 2024 *)
    (* Calculation of constant d: *) Chop[1/r /. FindRoot[{(1 + r)*QPochhammer[s, s] == 1, Log[1 - s] + QPolyGamma[0, 1, s] - (1 + r)*s*Log[s] * Derivative[0, 1][QPochhammer][s, s] == 0}, {r, -1/5}, {s, -1/2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 18 2024 *)

Formula

From Vaclav Kotesovec, Nov 11 2017: (Start)
a(n) ~ -(-1)^n * c * d^n / n^(3/2), where
d = 5.379264118840884783404842050140885100801253519243086... and
c = 0.10697042824132534557642152089737206588353695053... (End)
G.f. A(x) satisfies: A(x) = 1 - (1/(1 + x)) * Product_{k>=2} 1/(1 - A(x)^k). - Ilya Gutkovskiy, Apr 23 2020

Extensions

Signs corrected Dec 24 2001