cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007359 Number of partitions of n into pairwise coprime parts that are >= 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 4, 6, 5, 5, 8, 9, 10, 11, 11, 10, 14, 18, 19, 18, 20, 20, 25, 30, 35, 34, 32, 32, 43, 43, 57, 56, 51, 55, 67, 78, 87, 87, 80, 82, 97, 125, 128, 127, 128, 127, 146, 182, 191, 185, 184, 193, 213, 263, 290, 279, 258, 271, 312, 354, 404, 402
Offset: 0

Views

Author

N. J. A. Sloane and Mira Bernstein, following a suggestion from Marc LeBrun, Apr 28 1994

Keywords

Comments

This sequence is of interest for group theory. The partitions counted by a(n) correspond to conjugacy classes of optimal order of the symmetric group of n elements: they have no fixed point, their order is the direct product of their cycle lengths and they are not contained in a subgroup of Sym_p for p < n. A123131 gives the maximum order (LCM) reachable by these partitions.

Examples

			The a(17) = 9 strict partitions into pairwise coprime parts that are greater than 1 are (17), (15,2), (14,3), (13,4), (12,5), (11,6), (10,7), (9,8), (7,5,3,2). - _Gus Wiseman_, Apr 14 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, s) option remember; local f;
          if n=0 then 1
        elif i<2 then 0
        else f:= factorset(i);
             b(n, i-1, select(x-> is(x is(x b(n, n, {}):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 14 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&(Length[#]===1||CoprimeQ@@#)&]],{n,20}] (* Gus Wiseman, Apr 14 2018 *)

Formula

a(n) = A051424(n) - A051424(n-1). - Vladeta Jovovic, Dec 11 2004

Extensions

More precise definition from Vladeta Jovovic, Dec 11 2004
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 13 2005