A007359 Number of partitions of n into pairwise coprime parts that are >= 2.
1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 4, 6, 5, 5, 8, 9, 10, 11, 11, 10, 14, 18, 19, 18, 20, 20, 25, 30, 35, 34, 32, 32, 43, 43, 57, 56, 51, 55, 67, 78, 87, 87, 80, 82, 97, 125, 128, 127, 128, 127, 146, 182, 191, 185, 184, 193, 213, 263, 290, 279, 258, 271, 312, 354, 404, 402
Offset: 0
Examples
The a(17) = 9 strict partitions into pairwise coprime parts that are greater than 1 are (17), (15,2), (14,3), (13,4), (12,5), (11,6), (10,7), (9,8), (7,5,3,2). - _Gus Wiseman_, Apr 14 2018
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..750 (terms 0..400 from Alois P. Heinz)
- M. LeBrun & D. Hoey, Emails
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, i, s) option remember; local f; if n=0 then 1 elif i<2 then 0 else f:= factorset(i); b(n, i-1, select(x-> is(x is(x b(n, n, {}): seq(a(n), n=0..80); # Alois P. Heinz, Mar 14 2012
-
Mathematica
b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&(Length[#]===1||CoprimeQ@@#)&]],{n,20}] (* Gus Wiseman, Apr 14 2018 *)
Formula
Extensions
More precise definition from Vladeta Jovovic, Dec 11 2004
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 13 2005
Comments