A007366 Numbers k such that phi(x) = k has exactly 2 solutions.
1, 10, 22, 28, 30, 46, 52, 54, 58, 66, 70, 78, 82, 102, 106, 110, 126, 130, 136, 138, 148, 150, 166, 172, 178, 190, 196, 198, 210, 222, 226, 228, 238, 250, 262, 268, 270, 282, 292, 294, 306, 310, 316, 330, 342, 346, 358, 366, 372, 378, 382, 388, 418, 430, 438
Offset: 1
Keywords
Examples
10 = phi(11) = phi(22).
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- Wacław Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jul. 1992.
Crossrefs
Programs
-
Maple
select(nops@numtheory:-invphi=2, [$1..1000]); # Robert Israel, Dec 20 2017
-
Mathematica
a = Table[ 0, {500} ]; Do[ p = EulerPhi[ n ]; If[ p < 501, a[ [ p ] ]++ ], {n, 1, 500} ]; Select[ Range[ 500 ], a[ [ # ] ] == 2 & ] (* Second program: *) With[{nn = 1325}, TakeWhile[Union@ Select[KeyValueMap[{#1, Length@ #2} &, PositionIndex@ Array[EulerPhi, nn]], Last@ # == 2 &][[All, 1]], # < nn/3 &] ] (* Michael De Vlieger, Dec 20 2017 *)
-
PARI
is(k) = invphiNum(k) == 2 \\ Amiram Eldar, Nov 16 2024, using Max Alekseyev's invphi.gp
Formula
#({phi^(-1)(a(n))}) = 2. - Torlach Rush, Dec 22 2017
Comments