cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A007367 Numbers k such that phi(x) = k has exactly 3 solutions.

Original entry on oeis.org

2, 44, 56, 92, 104, 116, 140, 164, 204, 212, 260, 296, 332, 344, 356, 380, 392, 444, 452, 476, 524, 536, 564, 584, 588, 620, 632, 684, 692, 716, 744, 764, 776, 836, 860, 884, 932, 956, 980, 1004, 1016, 1112, 1124, 1136, 1172, 1196, 1284, 1292, 1304
Offset: 1

Views

Author

Keywords

Comments

From Torlach Rush, Jul 23 2018: (Start)
For known terms:
- The greatest common divisor of the three solutions is the distance of the middle solution from the least solution and is half the distance of the middle solution to the largest solution.
- If the number of distinct prime factors of k equals the number of solutions of k = phi(x), then the greatest common divisor of the solutions is the least solution divided by the number of solutions.
- Except for a(1), if the largest prime factor is the same for all solutions and is equal to the greatest common divisor of all solutions then the distance from a(n) to the least solution is gcd({k: phi(k) = a(n)}) + 2. (End)
By Ford's theorem on Euler totient function, this sequence is infinite. - Jianing Song, Jul 18 2018

Examples

			phi(69) = phi(92) = phi(138) = 44, so 44 is a term.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 44, p. 17, Ellipses, Paris, 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of solutions: A007617 (0), A007366 (2), this sequence (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Haskell
    a007367 n = a007367_list !! (n-1)
    a007367_list = map fst $
                   filter ((== 3) . snd) $ zip a002202_list a058277_list
    -- Reinhard Zumkeller, Nov 25 2015
    
  • Mathematica
    a = Table[ 0, {1500} ]; Do[ p = EulerPhi[ n ]; If[ p < 1501, a[ [ p ] ]++ ], {n, 1, 1500} ]; Select[ Range[ 1500 ], a[ [ # ] ] == 3 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==3&][[All,1]],50]//Sort (* Harvey P. Dale, Apr 02 2018 *)
  • PARI
    is(k) = invphiNum(k) == 3 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060668 Numbers k such that phi(x) = k has exactly 5 solutions.

Original entry on oeis.org

8, 20, 220, 272, 300, 368, 416, 456, 500, 656, 732, 848, 876, 1092, 1160, 1212, 1236, 1328, 1376, 1424, 1568, 1624, 1716, 1808, 2144, 2244, 2336, 2420, 2460, 2480, 2528, 2556, 2768, 3056, 3080, 3252, 3320, 3344, 3536, 3560, 3612, 3728, 3732, 3900, 4016
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			8 = phi(15) = phi(16) = phi(20) = phi(24) = phi(30).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), this sequence (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {5000} ]; Do[ p = EulerPhi[ n ]; If[ p < 5001, a[[ p ]]++ ], {n, 1, 15000} ]; Select[ Range[ 5000 ], a[[ # ]] == 5 & ]
  • PARI
    is(n)=sum(k=1,n,eulerphi(k)==n)==5 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 5 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060670 Numbers k such that phi(x) = k has exactly 7 solutions.

Original entry on oeis.org

32, 132, 156, 544, 912, 924, 1012, 1044, 1140, 1452, 1464, 1472, 1476, 1572, 1664, 1764, 2076, 2100, 2232, 2424, 2580, 2624, 2652, 3096, 3248, 3336, 3444, 3660, 3996, 4488, 4776, 4840, 5060, 5316, 5412, 5696, 6504, 6516, 6540, 6612, 6660, 6780, 6996, 7116
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			32 = phi(51) = phi(64) = phi(68) = phi(80) = phi(96) = phi(102) = phi(120).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), this sequence (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {8000} ]; Do[ p = EulerPhi[ n ]; If[ p < 8001, a[ [ p ] ]++ ], {n, 1, 25000} ]; Select[ Range[ 8000 ], a[ [ # ] ] == 7 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==7 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 7 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060674 Numbers k such that phi(x) = k has exactly 11 solutions.

Original entry on oeis.org

48, 512, 540, 1000, 1836, 2136, 2176, 2320, 2340, 3216, 3648, 3936, 4284, 4352, 4356, 4784, 5088, 5640, 5936, 6216, 6576, 6816, 7120, 7224, 7280, 7752, 8100, 8184, 8496, 8520, 8760, 9040, 9296, 9660, 9680, 9900, 9996, 10332, 10860, 11640, 11680, 11844
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			48 = phi(65) = phi(104) = phi(105) = phi(112) = phi(130) = phi(140) = phi(144) = phi(156) = phi(168) = phi(180) = phi(210).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), this sequence (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {12500} ]; Do[ p = EulerPhi[ n ]; If[ p < 12501, a[ [ p ] ]++ ], {n, 1, 50000} ]; Select[ Range[ 12500 ], a[ [ # ] ] == 11 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==11 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 11 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060667 Numbers k such that phi(x) = k has exactly 4 solutions.

Original entry on oeis.org

4, 6, 18, 42, 100, 162, 184, 208, 328, 424, 460, 468, 486, 492, 616, 636, 664, 688, 700, 712, 784, 820, 900, 904, 1020, 1060, 1072, 1168, 1240, 1264, 1276, 1288, 1300, 1356, 1360, 1384, 1404, 1458, 1480, 1528, 1672, 1740, 1768, 1864, 1896, 1900, 1908, 2008
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			18 = phi(19) = phi(27) = phi(38) = phi(54).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), this sequence (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {2500} ]; Do[ p = EulerPhi[ n ]; If[ p < 2501, a[ [ p ] ]++ ], {n, 1, 5000} ]; Select[ Range[ 2500 ], a[ [ # ] ] == 4 & ]
  • PARI
    is(k) = invphiNum(k) == 4 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060669 Numbers k such that phi(x) = k has exactly 6 solutions.

Original entry on oeis.org

12, 16, 84, 88, 112, 232, 348, 408, 592, 736, 760, 780, 832, 952, 984, 1032, 1048, 1068, 1128, 1232, 1272, 1312, 1332, 1428, 1432, 1488, 1552, 1608, 1692, 1912, 2052, 2200, 2272, 2292, 2436, 2484, 2552, 2576, 2608, 2632, 2700, 2728, 2832, 2848, 3048, 3088
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			12 = phi(13) = phi(21) = phi(26) = phi(28) = phi(36) = phi(42).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), this sequence (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {4000} ]; Do[ p = EulerPhi[ n ]; If[ p < 4001, a[ [ p ] ]++ ], {n, 1, 15000} ]; Select[ Range[ 4000 ], a[ [ # ] ] == 6 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==6&][[All,1]]//Sort,50] (* Harvey P. Dale, Sep 15 2016 *)
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==6 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 6 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060671 Numbers k such that phi(x) = k has exactly 8 solutions.

Original entry on oeis.org

36, 64, 176, 200, 224, 280, 324, 464, 520, 888, 920, 1184, 1368, 1400, 1520, 1696, 1720, 1904, 1960, 2040, 2096, 2120, 2256, 2392, 2600, 2656, 2712, 2752, 2864, 2944, 2960, 2968, 2976, 2988, 3104, 3276, 3300, 3408, 3616, 3640, 3792, 3800, 3816, 3824, 3880
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			36 = phi(37) = phi(57) = phi(63) = phi(74) = phi(76) = phi(108) = phi(114) = phi(126).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), this sequence (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {5000} ]; Do[ p = EulerPhi[ n ]; If[ p < 5001, a[ [ p ] ]++ ], {n, 1, 25000} ]; Select[ Range[ 5000 ], a[ [ # ] ] == 8 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==8 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 8 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060672 Numbers k such that phi(x) = k has exactly 9 solutions.

Original entry on oeis.org

40, 60, 108, 128, 252, 276, 440, 612, 696, 996, 1088, 1380, 1500, 1824, 1860, 1932, 2064, 2472, 2796, 2928, 3060, 3132, 3384, 3516, 4584, 4932, 5076, 5136, 5436, 5700, 5888, 6096, 6372, 6640, 6744, 7020, 7080, 7380, 7452, 7476, 7704, 8040, 8676, 8892
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			40 = phi(41) = phi(55) = phi(75) = phi(82) = phi(88) = phi(100) = phi(110) = phi(132) = phi(150).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), this sequence (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {10000} ]; Do[ p = EulerPhi[ n ]; If[ p < 10001, a[ [ p ] ]++ ], {n, 1, 35000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 9 & ]
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==9 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 9 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060673 Numbers k such that phi(x) = k has exactly 10 solutions.

Original entry on oeis.org

24, 80, 180, 256, 264, 828, 1188, 1640, 1968, 2024, 2368, 2544, 2720, 2772, 2904, 3036, 3136, 3144, 3328, 3392, 3420, 4192, 4392, 4464, 4600, 5000, 5312, 5504, 5508, 5688, 5728, 5796, 5800, 6208, 6228, 6732, 6888, 7000, 7232, 7740, 7956, 8388, 8576, 9088
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			24 = phi(35) = phi(39) = phi(45) = phi(52) = phi(56) = phi(70) = phi(72) = phi(78) = phi(84) = phi(90).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), this sequence (10), A060674 (11), A060675 (12).

Programs

  • Mathematica
    a = Table[ 0, {10000} ]; Do[ p = EulerPhi[ n ]; If[ p < 10001, a[ [ p ] ]++ ], {n, 1, 35000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 10 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==10&][[;;,1]]//Union,50] (* Harvey P. Dale, Sep 15 2023 *)
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==10 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 10 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060675 Numbers k such that phi(x) = k has exactly 12 solutions.

Original entry on oeis.org

160, 168, 352, 448, 816, 928, 972, 1024, 1176, 1848, 2464, 3040, 3808, 4152, 4440, 4512, 4736, 4944, 5104, 5152, 5160, 5304, 5952, 6408, 6656, 6672, 6784, 7648, 8384, 8704, 8904, 10432, 10528, 10624, 11000, 11008, 11456, 11776, 12048, 12416, 13024, 13032
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			160 = phi(187) = phi(205) = phi(328) = phi(352) = phi(374) = phi(400) = phi(410) = phi(440) = phi(492) = phi(528) = phi(600) = phi(660).
		

Crossrefs

Cf. A000010.
Number of solutions: A007617 (0), A007366 (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), this sequence (12).

Programs

  • Mathematica
    a = Table[ 0, {15000} ]; Do[ p = EulerPhi[ n ]; If[ p < 15001, a[ [ p ] ]++ ], {n, 1, 60000} ]; Select[ Range[ 15000 ], a[ [ # ] ] == 12 & ]
    Union[Transpose[Select[Tally[EulerPhi[Range[100000]]],#[[2]]==12&]][[1]]] (* Harvey P. Dale, Oct 05 2015 *)
  • PARI
    is(n)=sum(i=1,n,eulerphi(i)==n)==12 \\ Charles R Greathouse IV, Mar 03 2014
    
  • PARI
    is(k) = invphiNum(k) == 12 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp
Showing 1-10 of 15 results. Next