cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A002516 Earliest sequence with a(a(n)) = 2n.

Original entry on oeis.org

0, 3, 6, 2, 12, 7, 4, 10, 24, 11, 14, 18, 8, 15, 20, 26, 48, 19, 22, 34, 28, 23, 36, 42, 16, 27, 30, 50, 40, 31, 52, 58, 96, 35, 38, 66, 44, 39, 68, 74, 56, 43, 46, 82, 72, 47, 84, 90, 32, 51, 54, 98, 60, 55, 100, 106, 80, 59, 62, 114, 104, 63, 116, 122, 192, 67, 70, 130
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a002516 n = a002516_list !! n
    a002516_list = 0 : concat (transpose
    [a004767_list, f a002516_list, a017089_list, g $ drop 2 a002516_list])
    where f [z] = []; f (_:z:zs) = 2 * z : f zs
    g [z] = [z]; g (z:_:zs) = 2 * z : g zs
    -- Reinhard Zumkeller, Jun 08 2015
  • Mathematica
    a[0] = 0; a[n_ /; Mod[n, 2] == 0] := a[n] = 2*a[n/2]; a[n_ /; Mod[n, 4] == 1] := n+2; a[n_ /; Mod[n, 4] == 3] := 2(n-2); Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Feb 06 2012, after Henry Bottomley *)
  • PARI
    v2(n)=valuation(n,2)
    a(n)=2^v2(n)*(-1+3/2*n/2^v2(n)-(-3+1/2*n/2^v2(n))*(-1)^((n/2^v2(n)-1)/2))
    
  • PARI
    a(n)=local(t); if(n<1,0,if(n%2==0,2*a(n/2),t=(n-1)/2; 3*t+1/2-(t-5/2)*(-1)^t)) \\ Ralf Stephan, Feb 22 2004
    

Formula

a(4n) = 2*(a(2n)), a(4n+1) = 4n+3, a(4n+2) = 2*(a(2n+1)), a(4n+3) = 8n+2. - Henry Bottomley, Apr 27 2000
From Ralf Stephan, Feb 22 2004: (Start)
a(n) = n + 2*A006519(n) if odd part of n is of form 4k+1, or 2n - 4*A006519(n) otherwise.
a(2n) = 2*a(n), a(2n+1) = 2n + 3 + (2n - 5)*[n mod 2].
G.f.: Sum_{k>=0} 2^k*t(6t^6 + t^4 + 2t^2 + 3)/(1 - t^4)^2, t = x^2^k. (End)

A002517 Earliest sequence with a(a(n))=3n.

Original entry on oeis.org

0, 2, 3, 6, 5, 12, 9, 8, 21, 18, 11, 30, 15, 14, 39, 36, 17, 48, 27, 20, 57, 24, 23, 66, 63, 26, 75, 54, 29, 84, 33, 32, 93, 90, 35, 102, 45, 38, 111, 42, 41, 120, 117, 44, 129, 108, 47, 138, 51, 50, 147, 144, 53, 156, 81, 56, 165, 60, 59, 174, 171, 62, 183, 72, 65, 192
Offset: 0

Views

Author

Keywords

Comments

a(3*n+1) = A016789(n), a(3*n+2) = A017197(n). - Reinhard Zumkeller, Jun 04 2015

Crossrefs

Cf. A007494 (sorted), A016789, A017197.

Programs

  • Haskell
    import Data.List (transpose)
    a002517 n = a002517_list !! n
    a002517_list = 0 : concat
       (transpose [[2, 5 ..], [3, 12 ..], map (* 3) $ tail a002517_list])
    -- Reinhard Zumkeller, Jun 04 2015
  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 3] == 0, 3*a[n/3], Mod[n, 3] == 1, n+1, True, 3*(n-1)]; Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Sep 24 2012 *)

Formula

a(3n)=3*a(n), a(3n+1)=3n+2, a(3n+2)=9n+3

Extensions

Formula and more terms from Henry Bottomley, Apr 27 2000

A002518 Earliest sequence with a(a(n))=5n.

Original entry on oeis.org

0, 2, 5, 4, 15, 10, 7, 30, 9, 40, 25, 12, 55, 14, 65, 20, 17, 80, 19, 90, 75, 22, 105, 24, 115, 50, 27, 130, 29, 140, 35, 32, 155, 34, 165, 150, 37, 180, 39, 190, 45, 42, 205, 44, 215, 200, 47, 230, 49, 240, 125, 52, 255, 54, 265, 60, 57, 280, 59, 290, 275, 62, 305
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 5] == 0, 5*a[n/5], Mod[n, 5] == 1, n+1, Mod[n, 5] == 2, 5*(n-2)+5, Mod[n, 5] == 3, n+1, True, 5*(n-4)+15]; a[0] = 0; Table[ a[n], {n, 0, 62}] (* Jean-François Alcover, Sep 24 2012 *)

Formula

a(5n)=5*a(n), a(5n+1)=5n+2, a(5n+2)=25n+5, a(5n+3)=5n+4, a(5n+4)=25n+15

Extensions

Corrected description and more terms from Henry Bottomley, Apr 27 2000

A054786 Earliest sequence with a(a(n)) = 6n.

Original entry on oeis.org

0, 2, 6, 4, 18, 7, 12, 30, 9, 48, 11, 60, 36, 14, 78, 16, 90, 19, 24, 102, 21, 120, 23, 132, 108, 26, 150, 28, 162, 31, 42, 174, 33, 192, 35, 204, 72, 38, 222, 40, 234, 43, 180, 246, 45, 264, 47, 276, 54, 50, 294, 52, 306, 55, 288, 318, 57, 336, 59, 348, 66, 62, 366, 64
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = Switch[ Mod[n, 12], 0 | 6, 6*a[n/6], 1 | 3 | 8 | 10, n+1, 2 | 4 | 9 | 11, 6*n-6, 5, n+2, 7, 6*n-12]; Table[a[n], {n, 0, 63}] (* Jean-François Alcover, Dec 20 2011, after formula *)

Formula

a(12n)=6*a(2n), a(12n+1)=12n+2, a(12n+2)=72n+6, a(12n+3)=12n+4, a(12n+4)=72n+18, a(12n+5)=12n+7, a(12n+6)=6*a(2n+1), a(12n+7)=72n+30, a(12n+8)=12n+9, a(12n+9)=72n+48, a(12n+10)=12n+11, a(12n+11)=72n+60.

Extensions

Typo in formula corrected by Reinhard Zumkeller, Jul 23 2010

A054787 Earliest sequence with a(a(n))=7n.

Original entry on oeis.org

0, 2, 7, 4, 21, 6, 35, 14, 9, 56, 11, 70, 13, 84, 49, 16, 105, 18, 119, 20, 133, 28, 23, 154, 25, 168, 27, 182, 147, 30, 203, 32, 217, 34, 231, 42, 37, 252, 39, 266, 41, 280, 245, 44, 301, 46, 315, 48, 329, 98, 51, 350, 53, 364, 55, 378, 63, 58, 399, 60, 413, 62, 427, 392
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 7] == 0, 7*a[n/7], Mod[n, 7] == 1, n+1, Mod[n, 7] == 2, 7*(n-2)+7, Mod[n, 7] == 3, n+1, Mod[n, 7] == 4, 7*(n-4)+21, Mod[n, 7] == 5, n+1, Mod[n, 7] == 6, 7*(n-6)+35]; a[0] = 0; Table[a[n], {n, 0, 63}] (* Jean-François Alcover, Sep 24 2012 *)

Formula

a(7n)=7*a(n), a(7n+1)=7n+2, a(7n+2)=49n+7, a(7n+3)=7n+4, a(7n+4)=49n+21, a(7n+5)=7n+6, a(7n+6)=49n+35

A054790 Earliest sequence with a(a(n))=10n.

Original entry on oeis.org

0, 2, 10, 4, 30, 6, 50, 8, 70, 11, 20, 90, 13, 120, 15, 140, 17, 160, 19, 180, 100, 22, 210, 24, 230, 26, 250, 28, 270, 31, 40, 290, 33, 320, 35, 340, 37, 360, 39, 380, 300, 42, 410, 44, 430, 46, 450, 48, 470, 51, 60, 490, 53, 520, 55, 540, 57, 560, 59, 580, 500, 62, 610
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := Which[m = Mod[n, 20]; m == 0, 10*n-100, m == 9, n+2, m == 10, n+10, m == 11, 10*n-20, MemberQ[ {2, 4, 6, 8, 13, 15, 17, 19}, m], 10*n-10, True, n+1]; Table[ a[n], {n, 0, 62}] (* Jean-François Alcover, Sep 24 2012 *)

A054793 Earliest sequence with a(a(n)) = n^4.

Original entry on oeis.org

0, 1, 3, 16, 5, 256, 7, 1296, 9, 4096, 11, 10000, 13, 20736, 15, 38416, 81, 18, 83521, 20, 130321, 22, 194481, 24, 279841, 26, 390625, 28, 531441, 30, 707281, 32, 923521, 34, 1185921, 36, 1500625, 38, 1874161, 40, 2313441, 42, 2825761, 44, 3418801, 46
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[r = n^(1/4); IntegerQ[r], a[r]^4, OddQ[n - Floor[r]^4], n+1, True, (n-1)^4]; a[0]=0; a[1]=1; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Aug 07 2012, after formula *)
  • Python
    from sympy import integer_nthroot
    def A054793(n):
        a, b = integer_nthroot(n,4)
        return n if n <= 1 else A054793(a)**4 if b else n+1 if (n-a**4) % 2 else (n-1)**4 # Chai Wah Wu, Apr 02 2021

Formula

if n is a 4th power then a(n)=a(n^(1/4))^4, otherwise if the difference between n and the highest 4th power less than n is odd then a(n)=n+1, otherwise a(n)=(n-1)^4.

A054788 Earliest sequence with a(a(n))=8n.

Original entry on oeis.org

0, 2, 8, 4, 24, 6, 40, 9, 16, 56, 11, 80, 13, 96, 15, 112, 64, 18, 136, 20, 152, 22, 168, 25, 32, 184, 27, 208, 29, 224, 31, 240, 192, 34, 264, 36, 280, 38, 296, 41, 48, 312, 43, 336, 45, 352, 47, 368, 320, 50, 392, 52, 408, 54, 424, 57, 72, 440, 59, 464, 61, 480, 63, 496
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 63; amax = 8*nmax; t = {{0, a[0] = 0}, {1, a[1] = 2}, {2, a[2]}}; While[ !FreeQ[t, a], t = Table[{n, a[n]}, {n, 0, nmax}]; n = Select[t, !IntegerQ[ #[[2]] ] &, 1][[1, 1]]; t2 = Union[ Flatten[ Append[ Select[ t, IntegerQ[ #[[2]] ] &], n]]]; an = If[n == 2, 8, Select[ Complement[ Range[ Max[t2] ], t2], Mod[#, 8] != 0 &, 1][[1]] ]; a[n] = an; While[ an < amax, an = a[n = an] = 8 n]]; Table[ a[n], {n, 0, nmax}] (* Jean-François Alcover, Jan 11 2012 *)

A054789 Earliest sequence with a(a(n)) = 9n.

Original entry on oeis.org

0, 2, 9, 4, 27, 6, 45, 8, 63, 18, 11, 90, 13, 108, 15, 126, 17, 144, 81, 20, 171, 22, 189, 24, 207, 26, 225, 36, 29, 252, 31, 270, 33, 288, 35, 306, 243, 38, 333, 40, 351, 42, 369, 44, 387, 54, 47, 414, 49, 432, 51, 450, 53, 468, 405, 56, 495, 58, 513, 60, 531, 62, 549
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := Which[m = Mod[n, 18]; m == 0, 9*n-81, m == 9, n+9, MemberQ[ {1, 3, 5, 7, 10, 12, 14, 16}, m], n+1, True, 9*n-9]; Table[ a[n], {n, 0, 62}] (* Jean-François Alcover, Sep 24 2012 *)
Showing 1-9 of 9 results.