cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007494 Numbers that are congruent to 0 or 2 mod 3.

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107
Offset: 0

Views

Author

Christopher Lam Cham Kee (Topher(AT)CyberDude.Com)

Keywords

Comments

The map n -> a(n) (where a(n) = 3n/2 if n even or (3n+1)/2 if n odd) was studied by Mahler, in connection with "Z-numbers" and later by Flatto. One question was whether, iterating from an initial integer, one eventually encountered an iterate = 1 (mod 4). - Jeff Lagarias, Sep 23 2002
Partial sums of 0,2,1,2,1,2,1,2,1,... . - Paul Barry, Aug 18 2007
a(n) = numbers k such that antiharmonic mean of the first k positive integers is not integer. A169609(a(n-1)) = 3. See A146535 and A169609. Complement of A016777. - Jaroslav Krizek, May 28 2010
Range of A173732. - Reinhard Zumkeller, Apr 29 2012
Number of partitions of 6n into two odd parts. - Wesley Ivan Hurt, Nov 15 2014
Numbers m such that 3 divides A000217(m). - Bruno Berselli, Aug 04 2017
Maximal length of a snake like polyomino that fits in a 2 X n rectangle. - Alain Goupil, Feb 12 2020

References

  • L. Flatto, Z-numbers and beta-transformations, in Symbolic dynamics and its applications (New Haven, CT, 1991), 181-201, Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992.

Crossrefs

Complement of A016777.
Range of A002517.
Cf. A274406. [Bruno Berselli, Jun 26 2016]

Programs

Formula

a(n) = 3*n/2 if n even, otherwise (3*n+1)/2.
If u(1)=0, u(n) = n + floor(u(n-1)/3), then a(n-1) = u(n). - Benoit Cloitre, Nov 26 2002
G.f.: x*(x+2)/((1-x)^2*(1+x)). - Ralf Stephan, Apr 13 2002
a(n) = 3*floor(n/2) + 2*(n mod 2) = A032766(n) + A000035(n). - Reinhard Zumkeller, Apr 04 2005
a(n) = (6*n+1)/4 - (-1)^n/4; a(n) = Sum_{k=0..n-1} (1 + (-1)^(k/2)*cos(k*Pi/2)). - Paul Barry, Aug 18 2007
A145389(a(n)) <> 1. - Reinhard Zumkeller, Oct 10 2008
a(n) = A002943(n) - A173511(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = 3*n - a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
a(n) = Sum_{k>=0} A030308(n,k)*A042950(k). - Philippe Deléham, Oct 17 2011
a(n) = n + ceiling(n/2). - Arkadiusz Wesolowski, Sep 18 2012
a(n) = 2n - floor(n/2) = floor((3n+1)/2) = n + (n + (n mod 2))/2. - Wesley Ivan Hurt, Oct 19 2013
a(n) = A000217(n+1) - A099392(n+1). - Bui Quang Tuan, Mar 27 2015
a(n) = n + floor(n/2) + (n mod 2). - Bruno Berselli, Apr 04 2016
a(n) = Sum_{i=1..n} numerator(2/i). - Wesley Ivan Hurt, Feb 26 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(i,k)+(-1)^(k-i). - Wesley Ivan Hurt, Sep 20 2017
E.g.f.: (3*exp(x)*x + sinh(x))/2. - Stefano Spezia, Feb 11 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3)/2 - Pi/(6*sqrt(3)). - Amiram Eldar, Dec 04 2021

A002516 Earliest sequence with a(a(n)) = 2n.

Original entry on oeis.org

0, 3, 6, 2, 12, 7, 4, 10, 24, 11, 14, 18, 8, 15, 20, 26, 48, 19, 22, 34, 28, 23, 36, 42, 16, 27, 30, 50, 40, 31, 52, 58, 96, 35, 38, 66, 44, 39, 68, 74, 56, 43, 46, 82, 72, 47, 84, 90, 32, 51, 54, 98, 60, 55, 100, 106, 80, 59, 62, 114, 104, 63, 116, 122, 192, 67, 70, 130
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a002516 n = a002516_list !! n
    a002516_list = 0 : concat (transpose
    [a004767_list, f a002516_list, a017089_list, g $ drop 2 a002516_list])
    where f [z] = []; f (_:z:zs) = 2 * z : f zs
    g [z] = [z]; g (z:_:zs) = 2 * z : g zs
    -- Reinhard Zumkeller, Jun 08 2015
  • Mathematica
    a[0] = 0; a[n_ /; Mod[n, 2] == 0] := a[n] = 2*a[n/2]; a[n_ /; Mod[n, 4] == 1] := n+2; a[n_ /; Mod[n, 4] == 3] := 2(n-2); Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Feb 06 2012, after Henry Bottomley *)
  • PARI
    v2(n)=valuation(n,2)
    a(n)=2^v2(n)*(-1+3/2*n/2^v2(n)-(-3+1/2*n/2^v2(n))*(-1)^((n/2^v2(n)-1)/2))
    
  • PARI
    a(n)=local(t); if(n<1,0,if(n%2==0,2*a(n/2),t=(n-1)/2; 3*t+1/2-(t-5/2)*(-1)^t)) \\ Ralf Stephan, Feb 22 2004
    

Formula

a(4n) = 2*(a(2n)), a(4n+1) = 4n+3, a(4n+2) = 2*(a(2n+1)), a(4n+3) = 8n+2. - Henry Bottomley, Apr 27 2000
From Ralf Stephan, Feb 22 2004: (Start)
a(n) = n + 2*A006519(n) if odd part of n is of form 4k+1, or 2n - 4*A006519(n) otherwise.
a(2n) = 2*a(n), a(2n+1) = 2n + 3 + (2n - 5)*[n mod 2].
G.f.: Sum_{k>=0} 2^k*t(6t^6 + t^4 + 2t^2 + 3)/(1 - t^4)^2, t = x^2^k. (End)

A007379 Earliest sequence with a(a(n)) = 4n.

Original entry on oeis.org

0, 2, 4, 5, 8, 12, 7, 24, 16, 10, 36, 13, 20, 44, 15, 56, 32, 18, 68, 21, 48, 76, 23, 88, 28, 26, 100, 29, 96, 108, 31, 120, 64, 34, 132, 37, 40, 140, 39, 152, 144, 42, 164, 45, 52, 172, 47, 184, 80, 50, 196, 53, 176, 204, 55, 216, 60, 58, 228, 61, 224, 236, 63, 248
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 8] == 0, 4*a[n/4], Mod[n, 8] == 1, n+1, Mod[n, 8] == 2, 4*(n-2)+4, Mod[n, 8] == 3, n+2, Mod[n, 8] == 4, 4*a[(n-4)/4+1], Mod[n, 8] == 5, 4*(n-5) + 12, Mod[n, 8] == 6, n+1, True, 4*(n-7)+24]; a[0] = 0; Table[ a[n], {n, 0, 63}] (* Jean-François Alcover, Sep 24 2012 *)

Formula

a(8n)=4*a(2n), a(8n+1)=8n+2, a(8n+2)=32n+4, a(8n+3)=8n+5, a(8n+4)=4*a(2n+1), a(8n+5)=32n+12, a(8n+6)=8n+7, a(8n+7)=32n+24

Extensions

Formula and more terms from Henry Bottomley, Apr 27 2000

A002518 Earliest sequence with a(a(n))=5n.

Original entry on oeis.org

0, 2, 5, 4, 15, 10, 7, 30, 9, 40, 25, 12, 55, 14, 65, 20, 17, 80, 19, 90, 75, 22, 105, 24, 115, 50, 27, 130, 29, 140, 35, 32, 155, 34, 165, 150, 37, 180, 39, 190, 45, 42, 205, 44, 215, 200, 47, 230, 49, 240, 125, 52, 255, 54, 265, 60, 57, 280, 59, 290, 275, 62, 305
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 5] == 0, 5*a[n/5], Mod[n, 5] == 1, n+1, Mod[n, 5] == 2, 5*(n-2)+5, Mod[n, 5] == 3, n+1, True, 5*(n-4)+15]; a[0] = 0; Table[ a[n], {n, 0, 62}] (* Jean-François Alcover, Sep 24 2012 *)

Formula

a(5n)=5*a(n), a(5n+1)=5n+2, a(5n+2)=25n+5, a(5n+3)=5n+4, a(5n+4)=25n+15

Extensions

Corrected description and more terms from Henry Bottomley, Apr 27 2000

A054786 Earliest sequence with a(a(n)) = 6n.

Original entry on oeis.org

0, 2, 6, 4, 18, 7, 12, 30, 9, 48, 11, 60, 36, 14, 78, 16, 90, 19, 24, 102, 21, 120, 23, 132, 108, 26, 150, 28, 162, 31, 42, 174, 33, 192, 35, 204, 72, 38, 222, 40, 234, 43, 180, 246, 45, 264, 47, 276, 54, 50, 294, 52, 306, 55, 288, 318, 57, 336, 59, 348, 66, 62, 366, 64
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = Switch[ Mod[n, 12], 0 | 6, 6*a[n/6], 1 | 3 | 8 | 10, n+1, 2 | 4 | 9 | 11, 6*n-6, 5, n+2, 7, 6*n-12]; Table[a[n], {n, 0, 63}] (* Jean-François Alcover, Dec 20 2011, after formula *)

Formula

a(12n)=6*a(2n), a(12n+1)=12n+2, a(12n+2)=72n+6, a(12n+3)=12n+4, a(12n+4)=72n+18, a(12n+5)=12n+7, a(12n+6)=6*a(2n+1), a(12n+7)=72n+30, a(12n+8)=12n+9, a(12n+9)=72n+48, a(12n+10)=12n+11, a(12n+11)=72n+60.

Extensions

Typo in formula corrected by Reinhard Zumkeller, Jul 23 2010

A054787 Earliest sequence with a(a(n))=7n.

Original entry on oeis.org

0, 2, 7, 4, 21, 6, 35, 14, 9, 56, 11, 70, 13, 84, 49, 16, 105, 18, 119, 20, 133, 28, 23, 154, 25, 168, 27, 182, 147, 30, 203, 32, 217, 34, 231, 42, 37, 252, 39, 266, 41, 280, 245, 44, 301, 46, 315, 48, 329, 98, 51, 350, 53, 364, 55, 378, 63, 58, 399, 60, 413, 62, 427, 392
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[ Mod[n, 7] == 0, 7*a[n/7], Mod[n, 7] == 1, n+1, Mod[n, 7] == 2, 7*(n-2)+7, Mod[n, 7] == 3, n+1, Mod[n, 7] == 4, 7*(n-4)+21, Mod[n, 7] == 5, n+1, Mod[n, 7] == 6, 7*(n-6)+35]; a[0] = 0; Table[a[n], {n, 0, 63}] (* Jean-François Alcover, Sep 24 2012 *)

Formula

a(7n)=7*a(n), a(7n+1)=7n+2, a(7n+2)=49n+7, a(7n+3)=7n+4, a(7n+4)=49n+21, a(7n+5)=7n+6, a(7n+6)=49n+35

A054790 Earliest sequence with a(a(n))=10n.

Original entry on oeis.org

0, 2, 10, 4, 30, 6, 50, 8, 70, 11, 20, 90, 13, 120, 15, 140, 17, 160, 19, 180, 100, 22, 210, 24, 230, 26, 250, 28, 270, 31, 40, 290, 33, 320, 35, 340, 37, 360, 39, 380, 300, 42, 410, 44, 430, 46, 450, 48, 470, 51, 60, 490, 53, 520, 55, 540, 57, 560, 59, 580, 500, 62, 610
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := Which[m = Mod[n, 20]; m == 0, 10*n-100, m == 9, n+2, m == 10, n+10, m == 11, 10*n-20, MemberQ[ {2, 4, 6, 8, 13, 15, 17, 19}, m], 10*n-10, True, n+1]; Table[ a[n], {n, 0, 62}] (* Jean-François Alcover, Sep 24 2012 *)

A054788 Earliest sequence with a(a(n))=8n.

Original entry on oeis.org

0, 2, 8, 4, 24, 6, 40, 9, 16, 56, 11, 80, 13, 96, 15, 112, 64, 18, 136, 20, 152, 22, 168, 25, 32, 184, 27, 208, 29, 224, 31, 240, 192, 34, 264, 36, 280, 38, 296, 41, 48, 312, 43, 336, 45, 352, 47, 368, 320, 50, 392, 52, 408, 54, 424, 57, 72, 440, 59, 464, 61, 480, 63, 496
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 63; amax = 8*nmax; t = {{0, a[0] = 0}, {1, a[1] = 2}, {2, a[2]}}; While[ !FreeQ[t, a], t = Table[{n, a[n]}, {n, 0, nmax}]; n = Select[t, !IntegerQ[ #[[2]] ] &, 1][[1, 1]]; t2 = Union[ Flatten[ Append[ Select[ t, IntegerQ[ #[[2]] ] &], n]]]; an = If[n == 2, 8, Select[ Complement[ Range[ Max[t2] ], t2], Mod[#, 8] != 0 &, 1][[1]] ]; a[n] = an; While[ an < amax, an = a[n = an] = 8 n]]; Table[ a[n], {n, 0, nmax}] (* Jean-François Alcover, Jan 11 2012 *)

A054789 Earliest sequence with a(a(n)) = 9n.

Original entry on oeis.org

0, 2, 9, 4, 27, 6, 45, 8, 63, 18, 11, 90, 13, 108, 15, 126, 17, 144, 81, 20, 171, 22, 189, 24, 207, 26, 225, 36, 29, 252, 31, 270, 33, 288, 35, 306, 243, 38, 333, 40, 351, 42, 369, 44, 387, 54, 47, 414, 49, 432, 51, 450, 53, 468, 405, 56, 495, 58, 513, 60, 531, 62, 549
Offset: 0

Views

Author

Henry Bottomley, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := Which[m = Mod[n, 18]; m == 0, 9*n-81, m == 9, n+9, MemberQ[ {1, 3, 5, 7, 10, 12, 14, 16}, m], n+1, True, 9*n-9]; Table[ a[n], {n, 0, 62}] (* Jean-François Alcover, Sep 24 2012 *)
Showing 1-9 of 9 results.