A007408 Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^3.
1, 9, 251, 2035, 256103, 28567, 9822481, 78708473, 19148110939, 19164113947, 25523438671457, 25535765062457, 56123375845866029, 56140429821090029, 56154295334575853, 449325761325072949, 2207911834254200646437, 245358578943756786493
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 104.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..200
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Hisanori Mishima, Factorizations of many number sequences
- Hisanori Mishima, Factorizations of many number sequences
- D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), 10.6.7, Section 4.3.2.
Programs
-
Maple
A007408:=n->numer(sum(1/k^3,k=1..n)); map(%,[$1..20]); # M. F. Hasler, Nov 10 2006
-
Mathematica
Table[Numerator[Sum[1/k^3, {k, n}]], {n, 10}] (* Alonso del Arte, Dec 30 2012 *) Table[Denominator[HarmonicMean[Range[n]^3]],{n,20}] (* Harvey P. Dale, Aug 20 2017 *) Accumulate[1/Range[20]^3]//Numerator (* Harvey P. Dale, Aug 28 2023 *)
-
PARI
a(n)=numerator(sum(k=1,n,1/k^3)) \\ Charles R Greathouse IV, Jul 19 2011
-
Python
from fractions import Fraction from itertools import accumulate, count, islice def A007408gen(): yield from map(lambda x: x.numerator, accumulate(Fraction(1, k**3) for k in count(1))) print(list(islice(A007408gen(), 20))) # Michael S. Branicky, Jun 26 2022
Formula
Sum_{k = 1 .. n} 1/k^3 = sqrt(sum_{j = 1 .. n} sum_{i = 1 .. n} 1/(i * j)^3). - Alexander Adamchuk, Oct 26 2004
Comments