A007417 If k appears, 3k does not.
1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 100
Offset: 1
Examples
From _Gary W. Adamson_, Mar 02 2010: (Start) Given the following multiplication table: top row = "not multiples of 3", left column = powers of 3; we get: 1 2 4 5 7 8 10 11 13 3 6 12 15 21 24 30 33 39 9 18 36 45 63 72 90 99 114 27 54 108 81 If rows are labeled (1, 2, 3, ...) then odd-indexed rows are in the set; but evens not. Examples: 9 is in the set since 3 is not, but 27 in row 4 can't be. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Iain Fox, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Aviezri S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Math. 312 (2012), no. 1, 42-46.
- Simon Plouffe, Email to N. J. A. Sloane, Jun. 1994
- David Wakeham and David R. Wood, On multiplicative Sidon sets, INTEGERS, 13 (2013), #A26.
- Index entries for 3-automatic sequences.
Crossrefs
Programs
-
Haskell
import Data.List (delete) a007417 n = a007417_list !! (n-1) a007417_list = s [1..] where s (x:xs) = x : s (delete (3*x) xs)
-
Mathematica
Select[ Range[100], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // EvenQ)&] (* Jean-François Alcover, Mar 01 2013, after Philippe Deléham *) Select[Range[100], EvenQ@ IntegerExponent[#, 3] &] (* Michael De Vlieger, Sep 01 2020 *)
-
PARI
is(n) = { my(i = 0); while(n%3==0, n/=3; i++); i%2==0; } \\ Iain Fox, Nov 17 2017
-
PARI
is(n)=valuation(n,3)%2==0; \\ Joerg Arndt, Aug 08 2020
-
Python
from sympy import integer_log def A007417(n): def f(x): return n+x-sum(((m:=x//9**i)-2)//3+(m-1)//3+2 for i in range(integer_log(x,9)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 15 2025
Formula
Limit_{n->infinity} a(n)/n = 4/3. - Philippe Deléham, Mar 21 2004
Partial sums of A092400. Indices of even numbers in A007949. Indices of odd numbers in A051064. a(n) = A092401(2n-1). - Philippe Deléham, Mar 29 2004
{a(n)} = A052330({A042948(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Aug 31 2019
Extensions
More terms from Philippe Deléham, Mar 29 2004
Typo corrected by Philippe Deléham, Apr 15 2010
Comments