A007426 d_4(n), or tau_4(n), the number of ordered factorizations of n as n = rstu.
1, 4, 4, 10, 4, 16, 4, 20, 10, 16, 4, 40, 4, 16, 16, 35, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 56, 16, 16, 16, 100, 4, 16, 16, 80, 4, 64, 4, 40, 40, 16, 4, 140, 10, 40, 16, 40, 4, 80, 16, 80, 16, 16, 4, 160, 4, 16, 40, 84, 16, 64, 4, 40, 16, 64, 4, 200, 4, 16, 40, 40, 16
Offset: 1
References
- A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. xv.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- O. Bordellès, Explicit upper bounds for the average order of dn (m) and application to class number, J. Inequal. Pure and Appl. Math, 3(3), 2002.
- Karin Cvetko-Vah, Michael Kinyon, Jonathan Leech, Tomaž Pisanski, Regular Antilattices, arXiv:1911.02858 [math.RA], 2019.
- J. Furuya, Y. Tanigawa, W. Zhai, Dirichlet series obtained from the error term in the Dirichlet divisor problem, Monatshefte für Mathematik, 2010, 160(4), 385-402.
- J. Sándor, On the arithmetical functions d~ k (n) and d^*~ k (n), Portugaliae Mathematica, 53, 107-116.
- N. J. A. Sloane, Transforms
Programs
-
Maple
A007426 := proc(n) local e,j; e := ifactors(n)[2]: product(binomial(3+e[j][2],3), j=1..nops(e)); end;
-
Mathematica
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 4], {n, 77}] (* Robert G. Wilson v, Nov 02 2005 *) a[n_] := DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #]&]; Array[a, 80] (* Jean-François Alcover, Dec 01 2015 *) tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 4], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
-
PARI
for(n=1,100,print1(sumdiv(n,k,sumdiv(k,x,numdiv(x))),","))
-
PARI
a(n)=sumdiv(n,d,numdiv(n/d)*numdiv(d))
-
PARI
a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+3, 3)) \\ Charles R Greathouse IV, Oct 28 2017
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^4)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
-
Python
from math import prod, comb from sympy import factorint def A007426(n): return prod(comb(3+e,3) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024
Formula
a(n) = Sum_{d dividing n} tau(d)*tau(n/d). - Benoit Cloitre, May 12 2003
Dirichlet g.f.: zeta^4(x).
G.f.: Sum_{k>=1} tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Extensions
More terms from Robert G. Wilson v, Nov 02 2005
Comments