cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007426 d_4(n), or tau_4(n), the number of ordered factorizations of n as n = rstu.

Original entry on oeis.org

1, 4, 4, 10, 4, 16, 4, 20, 10, 16, 4, 40, 4, 16, 16, 35, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 56, 16, 16, 16, 100, 4, 16, 16, 80, 4, 64, 4, 40, 40, 16, 4, 140, 10, 40, 16, 40, 4, 80, 16, 80, 16, 16, 4, 160, 4, 16, 40, 84, 16, 64, 4, 40, 16, 64, 4, 200, 4, 16, 40, 40, 16
Offset: 1

Views

Author

Keywords

Comments

Inverse Möbius transform applied thrice to all 1's sequence; or, Dirichlet convolution of d(n) (A000005).
Let n = Product p_i^e_i. tau (A000005) is tau_2, A007425 is tau_3, this sequence is tau_4, where tau_k(n) (also written as d_k(n)) = Product_i binomial(k-1+e_i, k-1) is the k-th Piltz function. It gives the number of ordered factorizations of n as a product of k terms.
Appears to equal the number of solid partitions of n that can be extended in exactly 4 ways to a solid partition of n + 1 by adding one element. - Wouter Meeussen, Sep 11 2004
Equals row sums of A127172. - Gary W. Adamson, Nov 05 2007

References

  • A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. xv.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007425.
Cf. A127172, A051731, A061202 (partial sums).
Column k=4 of A077592.

Programs

  • Maple
    A007426 := proc(n) local e,j; e := ifactors(n)[2]: product(binomial(3+e[j][2],3), j=1..nops(e)); end;
  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 4], {n, 77}] (* Robert G. Wilson v, Nov 02 2005 *)
    a[n_] := DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #]&]; Array[a, 80] (* Jean-François Alcover, Dec 01 2015 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 4], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,k,sumdiv(k,x,numdiv(x))),","))
    
  • PARI
    a(n)=sumdiv(n,d,numdiv(n/d)*numdiv(d))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+3, 3)) \\ Charles R Greathouse IV, Oct 28 2017
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^4)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A007426(n): return prod(comb(3+e,3) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024

Formula

a(n) = Sum_{d dividing n} tau(d)*tau(n/d). - Benoit Cloitre, May 12 2003
Dirichlet g.f.: zeta^4(x).
G.f.: Sum_{k>=1} tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018

Extensions

More terms from Robert G. Wilson v, Nov 02 2005