cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007430 Inverse Moebius transform applied thrice to natural numbers.

Original entry on oeis.org

1, 5, 6, 16, 8, 30, 10, 42, 24, 40, 14, 96, 16, 50, 48, 99, 20, 120, 22, 128, 60, 70, 26, 252, 46, 80, 82, 160, 32, 240, 34, 219, 84, 100, 80, 384, 40, 110, 96, 336, 44, 300, 46, 224, 192, 130, 50, 594, 76, 230, 120, 256, 56, 410, 112, 420, 132, 160, 62, 768, 64, 170, 240, 466, 128, 420
Offset: 1

Views

Author

Keywords

Comments

a(n) = A000027(n) * A000012(n) * A000012(n) * A000012(n) = A000027(n) * A000012(n) * A000005(n) = A000203(n) * A000005(n) = A000203(n) * A000012(n) * A000012(n) = A007429(n) * A000012(n), where operation * denotes Dirichlet convolution for n >= 1. Dirichlet convolution of functions b(n), c(n) is function a(n) = b(n) * c(n) = Sum_{d|n} b(d)*c(n/d). - Jaroslav Krizek, Mar 20 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007430 n = sum $ zipWith (*) (map a000005 ds) (map a000203 $ reverse ds)
                where ds = a027750_row n
    -- Reinhard Zumkeller, Aug 02 2014
  • Mathematica
    a[n_] := Total[ DivisorSigma[1, #]*DivisorSigma[0, n/#]& /@ Divisors[n]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 15 2011 *)
  • PARI
    a(n)=sumdiv(n,d,sigma(d)*numdiv(n/d))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)^3/(1-p*X))[n]) /* Ralf Stephan */
    
  • PARI
    a(n)=sumdiv(n, x, sumdiv(x, y, sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */
    

Formula

a(n) = Sum_{d|n} sigma(d)*tau(n/d). - Benoit Cloitre, Mar 03 2004
Multiplicative with a(p^e) = Sum_{k=0..e} binomial(e-k+2, e-k)*p^k.
Dirichlet g.f.: zeta(s-1)*zeta^3(s).
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 432. - Vaclav Kotesovec, Nov 06 2018