cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007446 Exponentiation of e.g.f. for primes.

Original entry on oeis.org

1, 2, 7, 31, 162, 973, 6539, 48410, 390097, 3389877, 31534538, 312151125, 3271508959, 36149187780, 419604275375, 5100408982825, 64743452239424, 856157851884881, 11768914560546973, 167841252874889898, 2479014206472819045, 37860543940437797897
Offset: 0

Views

Author

Keywords

Comments

From Tilman Neumann, Oct 05 2008: (Start)
a(n) is also given by
- substituting the primes (A000040) into (the simplest) Faa di Bruno's formula, or
- the complete Bell polynomial of the first n prime arguments, or
- computing n-th moments from the first n primes as cumulants
The examples show that the coefficients of the prime power products are just A036040/A080575 (these are just rearrangements of the same coefficients). Moreover, the prime products of the additional terms span the whole space of natural numbers, thus what we see here is a reordering of the natural numbers! (End)

Examples

			From _Tilman Neumann_, Oct 05 2008: (Start)
Let p_i denote the i-th prime A000040(i). Then
a(1)=2 = 1*p_1
a(2)=7 = 1*p_2 + 1*p_1^2
a(3)=31 = 1*p_3 + 3*p_2*p_1 + 1*p_1^3
a(4)=162= 1*p_4 + 4*p_3*p_1 + 3*p_2^2 + 6*p_2*p_1^2 + 1*p_1^4
a(5)=973= 1*p_5 + 5*p_4*p_1 + 10*p_3*p_2 + 10*p_3*p_1^2 + 15*p_2^2*p_1 + 10*p_2*p_1^3 + 1*p_1^5
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A036040, A080575. - Tilman Neumann, Oct 05 2008

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*ithprime(j)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 18 2015
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, j-1]*Prime[j]*a[n-j], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
    Table[Sum[BellY[n, k, Prime[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • MuPAD
    completeBellMatrix := proc(x,n)
    // x - vector x[1]...x[m], m>=n
    local i,j,M;
    begin
    M:=matrix(n,n): // zero-initialized
    for i from 1 to n-1 do
    M[i,i+1]:=-1:
    end_for:
    for i from 1 to n do
    for j from 1 to i do
    M[i,j] := binomial(i-1,j-1)*x[i-j+1]:
    end_for:
    end_for:
    return (M):
    end_proc:
    completeBellPoly := proc(x, n)
    begin
    return (linalg::det(completeBellMatrix(x,n))):
    end_proc:
    x:=[2,3,5,7,11,13,17,19,23,29]:
    for i from 1 to 10 do print(i,completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008

Formula

E.g.f.: exp(Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Nov 26 2017