cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A036040 Irregular triangle of multinomial coefficients, read by rows (version 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 3, 6, 1, 1, 5, 10, 10, 15, 10, 1, 1, 6, 15, 10, 15, 60, 15, 20, 45, 15, 1, 1, 7, 21, 35, 21, 105, 70, 105, 35, 210, 105, 35, 105, 21, 1, 1, 8, 28, 56, 35, 28, 168, 280, 210, 280, 56, 420, 280, 840, 105, 70, 560, 420, 56, 210, 28, 1, 1, 9, 36, 84, 126, 36, 252
Offset: 1

Views

Author

Keywords

Comments

This is different from A080575 and A178867.
T(n,m) = count of set partitions of n with block lengths given by the m-th partition of n.
From Tilman Neumann, Oct 05 2008: (Start)
These are also the coefficients occurring in complete Bell polynomials, Faa di Bruno's formula (in its simplest form) and computation of moments from cumulants.
Though the Bell polynomials seem quite unwieldy, they can be computed easily as the determinant of an n-dimensional square matrix. (See, e.g., Coffey (2006) and program below.)
The complete Bell polynomial of the first n primes gives A007446. (End)
From Tom Copeland, Apr 29 2011: (Start)
A relation between partition polynomials formed from these "refined" Stirling numbers of the second kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
For simple diagrams of the relation between connected graphs, cumulants, and A036040, see the references on statistical physics below. In some sense, these graphs are duals of the umbral bouquets presented in "Lagrange a la Lah". (End)
These M3 (Abramowitz-Stegun) partition polynomials are the complete Bell polynomials (see a comment above) with recurrence (see the Wikipedia link) B_0 = 1, B_n = Sum_{k=0..n-1} binomial(n-1,k) * B_{n-1-k}*x[k+1], n >= 1. - Wolfdieter Lang, Aug 31 2016
With the indeterminates (x_1, x_2, x_3,...) = (t, -c_2*t, -c_3*t, ...) with c_n > 0, umbrally B(n,a.) = B(n,t)|{t^n = a_n} = 0 and B(j,a.)B(k,a.) = B(j,t)B(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A134685. - Tom Copeland, Feb 09 2018
For applications to functionals in quantum field theory, see Figueroa et al., Brouder, Kreimer and Yeats, and Balduf. In the last two papers, the Bell polynomials with the indeterminates (x_1, x_2, x_3,...) = (c_1, 2!c_2, 3!c_3, ...) are equivalent to the partition polynomials of A130561 in the indeterminates c_n. - Tom Copeland, Dec 17 2019
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced below. (End)
From Tom Copeland, Jun 12 2021: (Start)
These Bell polynomials and their relations to the Faa di Bruno Hopf bialgebra, correlation functions in quantum field theory, and the moment-cumulant duality are given on pp. 134 -144 of Zeidler.
An interpretation of the coefficients of the polynomials is given in expositions of the exponential formula, or principle, in Cameron et al., Duchamp, Duchamp et al., Labelle and Leroux, and Scott and Sokal along with some history. The simplest applications of this principle are given in A060540. (End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  3,  6,  1;
  1,  5, 10, 10, 15, 10,  1;
  1,  6, 15, 10, 15, 60, 15, 20, 45, 15, 1;
  ...
The first partition of 3 (i.e., (3)) induces the set {{1, 2, 3}}, so T(3, 1) = 1; the second one (i.e., (2, 1)) the sets {{1, 2}, {3}}, {{1, 3}, {2}}, and {{2, 3}, {1}}, so T(3, 2) = 3; and the third one (i.e., (1, 1, 1)) the set {{1}, {2}, {3}}, so T(3, 1) = 1. - _Lorenzo Sauras Altuzarra_, Jun 20 2022
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_3".
  • C. Itzykson and J. Drouffe, Statistical Field Theory Vol. 2, Cambridge Univ. Press, 1989, page 412.
  • S. Ma, Statistical Mechanics, World Scientific, 1985, page 205.
  • E. Zeidler, Quantum Field Theory II: Quantum Electrodynamics, Springer, 2009.

Crossrefs

See A080575 for another version.
Row sums are the Bell numbers A000110.
Cf. A000040, A007446, A178866 and A178867 (version 3).
Cf. A127671.
Cf. A060540 for the coefficients of the compositions e^{ x^m/m! }.

Programs

  • Maple
    with(combinat): nmax:=8: for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036040(n,m):= n!/(mul((t!)^q(t)*q(t)!,t=1..n)); od: od: seq(seq(A036040(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jun 21 2010, Jul 12 2016
  • Mathematica
    runs[li:{__Integer}] := ((Length/@ Split[ # ]))&[Sort@ li]; Table[temp=Map[Reverse, Sort@ (Sort/@ IntegerPartitions[w]), {1}]; Apply[Multinomial, temp, {1}]/Apply[Times, (runs/@ temp)!, {1}], {w, 6}]
  • MuPAD
    completeBellMatrix := proc(x,n) // x - vector x[1]...x[m], m>=n
    local i,j,M; begin
    M := matrix(n,n): // zero-initialized
    for i from 1 to n-1 do M[i,i+1] := -1: end_for:
    for i from 1 to n do for j from 1 to i do
        M[i,j] := binomial(i-1,j-1)*x[i-j+1]: end_for: end_for:
    return (M): end_proc:
    completeBellPoly := proc(x, n) begin
    return (linalg::det(completeBellMatrix (x,n))): end_proc:
    for i from 1 to 10 do print(i, completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008
    
  • PARI
    A036040_poly(n,V=vector(n,i,eval(Str('x,i))))={matdet(matrix(n,n,i,j,if(j<=i,binomial(i-1,j-1)*V[n-i+j],-(j==i+1))))} \\ Row n of the sequence is made of the coefficients of the monomials ordered by increasing total order (sum of powers) and then lexicographically. - M. F. Hasler, Nov 16 2013, updated Jul 12 2014
    
  • Sage
    from collections import Counter
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A036040_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [multinomial(p)//h(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A036040_row(n))
    # Peter Luschny, Dec 18 2016, corrected Apr 30 2022

Formula

E.g.f.: A(t) = exp(Sum_{k>=1} x[k]*(t^k)/k!).
T(n,m) is the coefficient of ((t^n)/n!)* x[1]^e(m,1)*x[2]^e(m,2)*...*x[n]^e(m,n) in A(t). Here the m-th partition of n, counted in Abramowitz-Stegun(A-St) order, is [1^e(m,1), 2^e(m,2), ..., n^e(m,n)] with e(m,j) >= 0 and if e(m, j)=0 then j^0 is not recorded.
a(n, m) = n!/Product_{j=1..n} j!^e(m,j)*e(m,j)!, with [1^e(m,1), 2^e(m,2), ..., n^e(m, n)] the m-th partition of n in the mentioned A-St order.
With the notation in the Lang reference, x(1) treated as a variable and D the derivative w.r.t. x(1), a raising operator for the polynomial S(n,x(1)) = P3_n(x[1], ..., x[n]) is R = Sum_{n>=0} x(n+1) D^n / n! ; i.e., R S(n, x(1)) = S(n+1, x(1)). The lowering operator is D; i.e., D S(n, x(1)) = n S(n-1, x(1)). The sequence of polynomials is an Appell sequence, so [S(.,x(1)) + y]^n = S(n, x(1) + y). For x(j) = (-1)^(j-1)* (j-1)! for j > 1, S(n, x(1)) = [x(1) - 1]^n + n [x(1) - 1]^(n-1). - Tom Copeland, Aug 01 2008
Raising and lowering operators are given for the partition polynomials formed from A036040 in the link in "Lagrange a la Lah Part I" on page 22. - Tom Copeland, Sep 18 2011
The n-th row is generated by the determinant of [Sum_{k=0..n-1} (x_(k+1)*(dP_n)^k/k!) - S_n], where dP_n is the n X n submatrix of A132440 and S_n is the n X n submatrix of A129185. The coefficients are flagged by the partitions of n represented by the monomials in the indeterminates x_k. Letting all x_n = t, generates the Bell / Touchard / exponential polynomials of A008277. - Tom Copeland, May 03 2014
The partition polynomials of A036039 are obtained by substituting (n-1)! x[n] for x[n] in the partition polynomials of this entry. - Tom Copeland, Nov 17 2015
-(n-1)! F(n, B(1, x[1]), B(2, x[1], x[2])/2!, ..., B(n, x[1], ..., x[n])/n!) = x[n] extracts the indeterminates of the complete Bell partition polynomials B(n, x[1], ..., x[n]) of this entry, where F(n, x[1], ..., x[n]) are the Faber polynomials of A263916. (Compare with A263634.) - Tom Copeland, Nov 29 2015; Sep 09 2016
T(n, m) = A127671(n, m)/A264753(n, m), n >= 1 and 1 <= m <= A000041(n). - Johannes W. Meijer, Jul 12 2016
From Tom Copeland, Sep 07 2016: (Start)
From the connections among the elementary Schur polynomials and the partition polynomials of A130561, A036039 and this array, the partition polynomials of this array satisfy (d/d(x_m)) P(n, x_1, ..., x_n) = binomial(n,m) * P(n-m, x_1, ..., x_(n-m)) with P(k, x_1, ..., x_n) = 0 for k < 0.
Just as in the discussion and example in A130561, the umbral compositional inverse sequence is given by the sequence P(n, x_1, -x_2, -x_3, ..., -x_n).
(End)
The partition polynomials with an index shift can be generated by (v(x) + d/dx)^n v(x). Cf. Guha, p. 12. - Tom Copeland, Jul 19 2018

Extensions

More terms from David W. Wilson
Additional comments from Wouter Meeussen, Mar 23 2003

A080575 Triangle of multinomial coefficients, read by rows (version 2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 3, 6, 1, 1, 5, 10, 10, 15, 10, 1, 1, 6, 15, 15, 10, 60, 20, 15, 45, 15, 1, 1, 7, 21, 21, 35, 105, 35, 70, 105, 210, 35, 105, 105, 21, 1, 1, 8, 28, 28, 56, 168, 56, 35, 280, 210, 420, 70, 280, 280, 840, 560, 56, 105, 420, 210, 28, 1, 1, 9, 36, 36, 84, 252, 84, 126, 504, 378, 756, 126, 315, 1260, 1260, 1890, 1260, 126, 280, 2520, 840, 1260, 3780, 1260, 84, 945, 1260, 378, 36, 1, 1, 10, 45, 45, 120, 360, 120, 210, 840, 630, 1260, 210
Offset: 1

Views

Author

Wouter Meeussen, Mar 23 2003

Keywords

Comments

This is different from A036040 and A178867.
T[n,m] = count of set partitions of n with block lengths given by the m-th partition of n in the canonical ordering.
From Tilman Neumann, Oct 05 2008: (Start)
These are also the coefficients occurring in complete Bell polynomials, Faa di Bruno's formula (in its simplest form) and computation of moments from cumulants.
Though the Bell polynomials seem quite unwieldy, they can be computed easily as the determinant of an n-dimensional square matrix. (see e.g. [Coffey] and program below)
The complete Bell polynomial of the first n primes gives A007446. (End)
The difference with A036040 and A178867 lies in the ordering of the monomials. This sequence uses lexicographic ordering, while in A036040 the total order (power) of the monomials prevails (Abramowitz-Stegun style): e.g., in row 6 we have ...+ 15*x[3]*x[5] + 15*x[3]*x[6]^2 + 10*x[4]^2 +...; in A036040 the coefficient of x[3]*x[6]^2 would come after that of x[4]^2 because the total order is higher, here it comes before in view of the lexicographic order. - M. F. Hasler, Jul 12 2015

Examples

			For n=4 the 5 integer partitions in canonical ordering with corresponding set partitions and counts are:
   [4]       -> #{1234} = 1
   [3,1]     -> #{123/4, 124/3, 134/2, 1/234} = 4
   [2,2]     -> #{12/34, 13/24, 14/23} = 3
   [2,1,1]   -> #{12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34} = 6
   [1,1,1,1] -> #{1/2/3/4} = 1
Thus row 4 is [1, 4, 3, 6, 1].
Triangle begins:
1;
1, 1;
1, 3,  1;
1, 4,  3,  6,  1;
1, 5, 10, 10, 15,  10,  1;
1, 6, 15, 15, 10,  60, 20, 15,  45,  15,  1;
1, 7, 21, 21, 35, 105, 35, 70, 105, 210, 35, 105, 105, 21, 1;
...
Row 4 represents 1*k(4)+4*k(3)*k(1)+3*k(2)^2+6*k(2)*k(1)^2+1*k(1)^4 and T(4,4)=6 since there are six ways of partitioning four labeled items into one part with two items and two parts each with one item.
		

References

  • See A036040 for the column labeled "M_3" in Abramowitz and Stegun, Handbook, p. 831.

Crossrefs

See A036040 for another version. Cf. A036036-A036039.
Row sums are A000110.
Row lengths are A000041.
Cf. A007446. - Tilman Neumann, Oct 05 2008
Cf. A178866 and A178867 (version 3). - Johannes W. Meijer, Jun 21 2010
Maximum value in row n gives A102356(n).

Programs

  • Mathematica
    runs[li:{__Integer}] := ((Length/@ Split[ # ]))&[Sort@ li]; Table[Apply[Multinomial, IntegerPartitions[w], {1}]/Apply[Times, (runs/@ IntegerPartitions[w])!, {1}], {w, 6}]
    (* Second program: *)
    completeBellMatrix[x_, n_] := Module[{M, i, j}, M[, ] = 0; For[i=1, i <= n-1 , i++, M[i, i+1] = -1]; For[i=1, i <= n , i++, For[j=1, j <= i, j++, M[i, j] = Binomial[i-1, j-1]*x[i-j+1]]]; Array[M, {n, n}]]; completeBellPoly[x_, n_] := Det[completeBellMatrix[x, n]]; row[n_] := List @@ completeBellPoly[x, n] /. x[] -> 1 // Reverse; Table[row[n], {n, 1, 10}] // Flatten (* _Jean-François Alcover, Aug 31 2016, after Tilman Neumann *)
    B[0] = 1;
    B[n_] := B[n] = Sum[Binomial[n-1, k] B[n-k-1] x[k+1], {k, 0, n-1}]//Expand;
    row[n_] := Reverse[List @@ B[n] /. x[_] -> 1];
    Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Aug 10 2018, after Wolfdieter Lang *)
  • MuPAD
    completeBellMatrix := proc(x,n) // x - vector x[1]...x[m], m>=n
    local i,j,M; begin M:=matrix(n,n): // zero-initialized
    for i from 1 to n-1 do M[i,i+1]:=-1: end_for:
    for i from 1 to n do for j from 1 to i do
        M[i,j] := binomial(i-1,j-1)*x[i-j+1]:
    end_for: end_for:
    return (M): end_proc:
    completeBellPoly := proc(x, n) begin
    return (linalg::det(completeBellMatrix(x,n))): end_proc:
    for i from 1 to 10 do print(i,completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008
    
  • PARI
    \\ See links.
    
  • PARI
    A080575_poly(n,V=vector(n,i,eval(Str('x,i))))={matdet(matrix(n,n,i,j,if(j<=i,binomial(i-1,j-1)*V[n-i+j],-(j==i+1))))}
    A080575_row(n)={(f(s)=if(type(s)!="t_INT",concat(apply(f,select(t->t,Vec(s)))),s))(A080575_poly(n))} \\ M. F. Hasler, Jul 12 2015

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A007447 Logarithm of e.g.f. for primes.

Original entry on oeis.org

2, -1, 3, -12, 59, -354, 2535, -21190, 202731, -2183462, 26130441, -343956264, 4938891841, -76827253854, 1287026203647, -23100628140676, 442271719973507, -8996704216880580, 193776558133638811, -4405549734148088108, 105432710994387193283, -2649353692976978990070
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*
          binomial(n, j)*t(n-j)*a(j), j=1..n-1)/n))(i->ithprime(i))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    a[n_] := a[n] = Function[t, If[n==0, 0, t[n] - Sum[j Binomial[n, j] t[n-j] a[j], {j, 1, n-1}]/n]][Prime];
    Array[a, 25] (* Jean-François Alcover, Oct 30 2020, after Alois P. Heinz *)

Formula

E.g.f.: log(1 + Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Mar 10 2018

Extensions

Signs from Christian G. Bower, Nov 15 1998

A300632 Expansion of e.g.f. exp(x + Sum_{k>=2} prime(k-1)*x^k/k!).

Original entry on oeis.org

1, 1, 3, 10, 42, 203, 1119, 6839, 45895, 334142, 2619052, 21946647, 195537777, 1843619725, 18321431155, 191242913022, 2090436115146, 23864653888881, 283865214366771, 3510656353388517, 45056394441558593, 599057016471131604, 8238406603745152620, 117020080948487107289
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2018

Keywords

Comments

Exponential transform of A008578.

Examples

			E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 10*x^3/3! + 42*x^4/4! + 203*x^5/5! + 1119*x^6/6! + 6839*x^7/7! + ..
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (p-> `if`(n=0, 1, add(a(n-j)*p(j)*
          binomial(n-1, j-1), j=1..n)))(t-> `if`(t=1, 1, ithprime(t-1)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x + Sum[Prime[k - 1] x^k/k!, {k, 2, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    p[1] = 1; p[n_] := p[n] = Prime[n - 1]; a[n_] := a[n] = Sum[p[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} A008578(k)*x^k/k!).

A145520 Triangle read by rows: T2[n,k] = Sum_{partitions of n with k parts p(n, k; m_1, m_2, m_3, ..., m_n)} c(n; m_1, m_2, ..., m_n) * x_1^m_1 * x_2^m_2 * ... x^n*m_n, where x_i = i-th prime.

Original entry on oeis.org

2, 3, 4, 5, 18, 8, 7, 67, 72, 16, 11, 220, 470, 240, 32, 13, 697, 2625, 2420, 720, 64, 17, 2100, 13559, 20230, 10360, 2016, 128, 19, 6159, 66374, 152313, 120400, 39200, 5376, 256, 23, 17340, 313136, 1071168, 1235346, 602784, 135744, 13824, 512, 29, 47581
Offset: 1

Views

Author

Tilman Neumann, Oct 12 2008, Oct 13 2008, Sep 02 2009

Keywords

Comments

Here c(n; m_1, m_2, ..., m_n) = n! / (m_1!*1!^m_1 * m_2!*2!^m_2 * ... * m_n!*n!^m_n) is the number of ways to realize the partition p(n, k; m_1, m_2, m_3, ..., m_n).
Also the Bell transform of the prime numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins:
:  2;
:  3,    4;
:  5,   18,     8;
:  7,   67,    72,    16;
: 11,  220,   470,   240,    32;
: 13,  697,  2625,  2420,   720,   64;
: 17, 2100, 13559, 20230, 10360, 2016, 128;
		

Crossrefs

Cf. A000040, A007446 (row sums), A145518.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(x
          *binomial(n-1, j-1)*ithprime(j)*b(n-j), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 27 2015
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> ithprime(n+1), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x*Binomial[n - 1, j - 1]*Prime[j]* b[n - j], {j, 1, n}]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, Prime[n+1]], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

A307770 Expansion of e.g.f. 1/(1 - Sum_{k>=1} prime(k)*x^k/k!).

Original entry on oeis.org

1, 2, 11, 89, 957, 12871, 207717, 3910931, 84155053, 2037195551, 54795228241, 1621233039941, 52328310410427, 1829742961027269, 68901415049874055, 2779901582389463177, 119635322278784511015, 5470390958849723994819, 264850557367286330886261, 13535194864326763053170325
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 27 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n, j)*ithprime(j)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 24 2021
  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - Sum[Prime[k] x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

A336185 a(n) = prime(n) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * k * a(k) * prime(n-k).

Original entry on oeis.org

2, 7, 39, 314, 3379, 45440, 733335, 13807364, 297105507, 7192224540, 193452015049, 5723688147650, 184742675924105, 6459822765521016, 243253254143586291, 9814313764465482774, 422366963490734937123, 19312961877700115922410, 935042624229107088382095
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Prime[n] + (1/n) Sum[Binomial[n, k] k a[k] Prime[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 19}]
    nmax = 19; CoefficientList[Series[-Log[1 - Sum[Prime[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: -log(1 - Sum_{k>=1} prime(k) * x^k / k!).

A343622 E.g.f.: log(1 + x + Sum_{k>=2} prime(k-1) * x^k / k!).

Original entry on oeis.org

1, 1, -1, -1, 6, -1, -79, 214, 1378, -11321, -14855, 611932, -1739312, -34374895, 311453831, 1548864398, -42005057494, 66254532775, 5287751144127, -45726542532086, -568193240268798, 12768316133375343, 16933257518347115, -3008868695961855284, 21477836260078982762
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Log[1 + x + Sum[Prime[k - 1] x^k/k!, {k, 2, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

a(n) = A008578(n) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * A008578(n-k) * k * a(k).

A300661 Expansion of e.g.f. exp(-Sum_{k>=1} prime(k)*x^k/k!).

Original entry on oeis.org

1, -2, 1, 5, 4, -53, -177, 282, 5759, 20355, -83420, -1420133, -6245485, 29035652, 648899541, 4034393367, -10488623858, -464971765297, -4310935438663, -3489419105786, 446500913437911, 6423072226704027, 30987397708208720, -462727554963927783, -11862200720684515159
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2018

Keywords

Examples

			E.g.f.: A(x) = 1 - 2*x/1! + x^2/2! + 5*x^3/3! + 4*x^4/4! - 53*x^5/5! - 177*x^6/6! + 282*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(a(n-j)*
          ithprime(j)*binomial(n-1, j-1), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[-Sum[Prime[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[-Prime[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]

Formula

E.g.f.: exp(-Sum_{k>=1} A000040(k)*x^k/k!).
Showing 1-10 of 15 results. Next