cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A008480 Number of ordered prime factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 6, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 12, 1, 2, 3, 1, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 3, 3, 2, 6, 1, 5, 1, 2, 1, 12, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on the prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).
Multinomial coefficients in prime factorization order. - Max Alekseyev, Nov 07 2006
The Dirichlet inverse is given by A080339, negating all but the A080339(1) element in A080339. - R. J. Mathar, Jul 15 2010
Number of (distinct) permutations of the multiset of prime factors. - Joerg Arndt, Feb 17 2015
Number of not divisible chains in the divisor lattice of n. - Peter Luschny, Jun 15 2013

References

  • A. Knopfmacher, J. Knopfmacher, and R. Warlimont, "Ordered factorizations for integers and arithmetical semigroups", in Advances in Number Theory, (Proc. 3rd Conf. Canadian Number Theory Assoc., 1991), Clarendon Press, Oxford, 1993, pp. 151-165.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.

Crossrefs

Cf. A124010, record values and where they occur: A260987, A260633.
Absolute values of A355939.

Programs

  • Haskell
    a008480 n = foldl div (a000142 $ sum es) (map a000142 es)
                where es = a124010_row n
    -- Reinhard Zumkeller, Nov 18 2015
    
  • Maple
    a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i-> i[2], ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 26 2018
  • Mathematica
    Prepend[ Array[ Multinomial @@ Last[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ]
    (* Second program: *)
    a[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Total[ee]!/Times @@ (ee!)]; Array[a, 101] (* Jean-François Alcover, Sep 15 2019 *)
  • PARI
    a(n)={my(sig=factor(n)[,2]); vecsum(sig)!/vecprod(apply(k->k!, sig))} \\ Andrew Howroyd, Nov 17 2018
    
  • Python
    from math import prod, factorial
    from sympy import factorint
    def A008480(n): return factorial(sum(f:=factorint(n).values()))//prod(map(factorial,f)) # Chai Wah Wu, Aug 05 2023
  • Sage
    def A008480(n):
        S = [s[1] for s in factor(n)]
        return factorial(sum(S)) // prod(factorial(s) for s in S)
    [A008480(n) for n in (1..101)]  # Peter Luschny, Jun 15 2013
    

Formula

If n = Product (p_j^k_j) then a(n) = ( Sum (k_j) )! / Product (k_j !).
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of primes.
a(p^k) = 1 if p is a prime.
a(A002110(n)) = A000142(n) = n!.
a(n) = A050382(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, May 26 2018
G.f. A(x) satisfies: A(x) = x + A(x^2) + A(x^3) + A(x^5) + ... + A(x^prime(k)) + ... - Ilya Gutkovskiy, May 10 2019
a(n) = C(k, n) for k = A001222(n) where C(k, n) is defined as the k-fold Dirichlet convolution of A001221(n) with itself, and where C(0, n) is the multiplicative identity with respect to Dirichlet convolution.
The average order of a(n) is asymptotic (up to an absolute constant) to 2A sqrt(2*Pi) log(n) / sqrt(log(log(n))) for some absolute constant A > 0. - Maxie D. Schmidt, May 28 2021
The sums of a(n) for n <= x and k >= 1 such that A001222(n)=k have asymptotic order of the form x*(log(log(x)))^(k+1/2) / ((2k+1) * (k-1)!). - Maxie D. Schmidt, Feb 12 2021
Other DGFs include: (1+P(s))^(-1) in terms of the prime zeta function for Re(s) > 1 where the + version weights the sequence by A008836(n), see the reference by Fröberg on P(s). - Maxie D. Schmidt, Feb 12 2021
The bivariate DGF (1+zP(s))^(-1) has coefficients a(n) / n^s (-1)^(A001221(n)) z^(A001222(n)) for Re(s) > 1 and 0 < |z| < 2 - Maxie D. Schmidt, Feb 12 2021
The distribution of the distinct values of the sequence for n<=x as x->infinity satisfy a CLT-type Erdős-Kac theorem analog proved by M. D. Schmidt, 2021. - Maxie D. Schmidt, Feb 12 2021
a(n) = abs(A355939(n)). - Antti Karttunen and Vaclav Kotesovec, Jul 22 2022
a(n) = A130675(n)/A112624(n). - Amiram Eldar, Mar 08 2024

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007

A036040 Irregular triangle of multinomial coefficients, read by rows (version 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 3, 6, 1, 1, 5, 10, 10, 15, 10, 1, 1, 6, 15, 10, 15, 60, 15, 20, 45, 15, 1, 1, 7, 21, 35, 21, 105, 70, 105, 35, 210, 105, 35, 105, 21, 1, 1, 8, 28, 56, 35, 28, 168, 280, 210, 280, 56, 420, 280, 840, 105, 70, 560, 420, 56, 210, 28, 1, 1, 9, 36, 84, 126, 36, 252
Offset: 1

Views

Author

Keywords

Comments

This is different from A080575 and A178867.
T(n,m) = count of set partitions of n with block lengths given by the m-th partition of n.
From Tilman Neumann, Oct 05 2008: (Start)
These are also the coefficients occurring in complete Bell polynomials, Faa di Bruno's formula (in its simplest form) and computation of moments from cumulants.
Though the Bell polynomials seem quite unwieldy, they can be computed easily as the determinant of an n-dimensional square matrix. (See, e.g., Coffey (2006) and program below.)
The complete Bell polynomial of the first n primes gives A007446. (End)
From Tom Copeland, Apr 29 2011: (Start)
A relation between partition polynomials formed from these "refined" Stirling numbers of the second kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
For simple diagrams of the relation between connected graphs, cumulants, and A036040, see the references on statistical physics below. In some sense, these graphs are duals of the umbral bouquets presented in "Lagrange a la Lah". (End)
These M3 (Abramowitz-Stegun) partition polynomials are the complete Bell polynomials (see a comment above) with recurrence (see the Wikipedia link) B_0 = 1, B_n = Sum_{k=0..n-1} binomial(n-1,k) * B_{n-1-k}*x[k+1], n >= 1. - Wolfdieter Lang, Aug 31 2016
With the indeterminates (x_1, x_2, x_3,...) = (t, -c_2*t, -c_3*t, ...) with c_n > 0, umbrally B(n,a.) = B(n,t)|{t^n = a_n} = 0 and B(j,a.)B(k,a.) = B(j,t)B(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A134685. - Tom Copeland, Feb 09 2018
For applications to functionals in quantum field theory, see Figueroa et al., Brouder, Kreimer and Yeats, and Balduf. In the last two papers, the Bell polynomials with the indeterminates (x_1, x_2, x_3,...) = (c_1, 2!c_2, 3!c_3, ...) are equivalent to the partition polynomials of A130561 in the indeterminates c_n. - Tom Copeland, Dec 17 2019
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced below. (End)
From Tom Copeland, Jun 12 2021: (Start)
These Bell polynomials and their relations to the Faa di Bruno Hopf bialgebra, correlation functions in quantum field theory, and the moment-cumulant duality are given on pp. 134 -144 of Zeidler.
An interpretation of the coefficients of the polynomials is given in expositions of the exponential formula, or principle, in Cameron et al., Duchamp, Duchamp et al., Labelle and Leroux, and Scott and Sokal along with some history. The simplest applications of this principle are given in A060540. (End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  3,  6,  1;
  1,  5, 10, 10, 15, 10,  1;
  1,  6, 15, 10, 15, 60, 15, 20, 45, 15, 1;
  ...
The first partition of 3 (i.e., (3)) induces the set {{1, 2, 3}}, so T(3, 1) = 1; the second one (i.e., (2, 1)) the sets {{1, 2}, {3}}, {{1, 3}, {2}}, and {{2, 3}, {1}}, so T(3, 2) = 3; and the third one (i.e., (1, 1, 1)) the set {{1}, {2}, {3}}, so T(3, 1) = 1. - _Lorenzo Sauras Altuzarra_, Jun 20 2022
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_3".
  • C. Itzykson and J. Drouffe, Statistical Field Theory Vol. 2, Cambridge Univ. Press, 1989, page 412.
  • S. Ma, Statistical Mechanics, World Scientific, 1985, page 205.
  • E. Zeidler, Quantum Field Theory II: Quantum Electrodynamics, Springer, 2009.

Crossrefs

See A080575 for another version.
Row sums are the Bell numbers A000110.
Cf. A000040, A007446, A178866 and A178867 (version 3).
Cf. A127671.
Cf. A060540 for the coefficients of the compositions e^{ x^m/m! }.

Programs

  • Maple
    with(combinat): nmax:=8: for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036040(n,m):= n!/(mul((t!)^q(t)*q(t)!,t=1..n)); od: od: seq(seq(A036040(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jun 21 2010, Jul 12 2016
  • Mathematica
    runs[li:{__Integer}] := ((Length/@ Split[ # ]))&[Sort@ li]; Table[temp=Map[Reverse, Sort@ (Sort/@ IntegerPartitions[w]), {1}]; Apply[Multinomial, temp, {1}]/Apply[Times, (runs/@ temp)!, {1}], {w, 6}]
  • MuPAD
    completeBellMatrix := proc(x,n) // x - vector x[1]...x[m], m>=n
    local i,j,M; begin
    M := matrix(n,n): // zero-initialized
    for i from 1 to n-1 do M[i,i+1] := -1: end_for:
    for i from 1 to n do for j from 1 to i do
        M[i,j] := binomial(i-1,j-1)*x[i-j+1]: end_for: end_for:
    return (M): end_proc:
    completeBellPoly := proc(x, n) begin
    return (linalg::det(completeBellMatrix (x,n))): end_proc:
    for i from 1 to 10 do print(i, completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008
    
  • PARI
    A036040_poly(n,V=vector(n,i,eval(Str('x,i))))={matdet(matrix(n,n,i,j,if(j<=i,binomial(i-1,j-1)*V[n-i+j],-(j==i+1))))} \\ Row n of the sequence is made of the coefficients of the monomials ordered by increasing total order (sum of powers) and then lexicographically. - M. F. Hasler, Nov 16 2013, updated Jul 12 2014
    
  • Sage
    from collections import Counter
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A036040_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [multinomial(p)//h(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A036040_row(n))
    # Peter Luschny, Dec 18 2016, corrected Apr 30 2022

Formula

E.g.f.: A(t) = exp(Sum_{k>=1} x[k]*(t^k)/k!).
T(n,m) is the coefficient of ((t^n)/n!)* x[1]^e(m,1)*x[2]^e(m,2)*...*x[n]^e(m,n) in A(t). Here the m-th partition of n, counted in Abramowitz-Stegun(A-St) order, is [1^e(m,1), 2^e(m,2), ..., n^e(m,n)] with e(m,j) >= 0 and if e(m, j)=0 then j^0 is not recorded.
a(n, m) = n!/Product_{j=1..n} j!^e(m,j)*e(m,j)!, with [1^e(m,1), 2^e(m,2), ..., n^e(m, n)] the m-th partition of n in the mentioned A-St order.
With the notation in the Lang reference, x(1) treated as a variable and D the derivative w.r.t. x(1), a raising operator for the polynomial S(n,x(1)) = P3_n(x[1], ..., x[n]) is R = Sum_{n>=0} x(n+1) D^n / n! ; i.e., R S(n, x(1)) = S(n+1, x(1)). The lowering operator is D; i.e., D S(n, x(1)) = n S(n-1, x(1)). The sequence of polynomials is an Appell sequence, so [S(.,x(1)) + y]^n = S(n, x(1) + y). For x(j) = (-1)^(j-1)* (j-1)! for j > 1, S(n, x(1)) = [x(1) - 1]^n + n [x(1) - 1]^(n-1). - Tom Copeland, Aug 01 2008
Raising and lowering operators are given for the partition polynomials formed from A036040 in the link in "Lagrange a la Lah Part I" on page 22. - Tom Copeland, Sep 18 2011
The n-th row is generated by the determinant of [Sum_{k=0..n-1} (x_(k+1)*(dP_n)^k/k!) - S_n], where dP_n is the n X n submatrix of A132440 and S_n is the n X n submatrix of A129185. The coefficients are flagged by the partitions of n represented by the monomials in the indeterminates x_k. Letting all x_n = t, generates the Bell / Touchard / exponential polynomials of A008277. - Tom Copeland, May 03 2014
The partition polynomials of A036039 are obtained by substituting (n-1)! x[n] for x[n] in the partition polynomials of this entry. - Tom Copeland, Nov 17 2015
-(n-1)! F(n, B(1, x[1]), B(2, x[1], x[2])/2!, ..., B(n, x[1], ..., x[n])/n!) = x[n] extracts the indeterminates of the complete Bell partition polynomials B(n, x[1], ..., x[n]) of this entry, where F(n, x[1], ..., x[n]) are the Faber polynomials of A263916. (Compare with A263634.) - Tom Copeland, Nov 29 2015; Sep 09 2016
T(n, m) = A127671(n, m)/A264753(n, m), n >= 1 and 1 <= m <= A000041(n). - Johannes W. Meijer, Jul 12 2016
From Tom Copeland, Sep 07 2016: (Start)
From the connections among the elementary Schur polynomials and the partition polynomials of A130561, A036039 and this array, the partition polynomials of this array satisfy (d/d(x_m)) P(n, x_1, ..., x_n) = binomial(n,m) * P(n-m, x_1, ..., x_(n-m)) with P(k, x_1, ..., x_n) = 0 for k < 0.
Just as in the discussion and example in A130561, the umbral compositional inverse sequence is given by the sequence P(n, x_1, -x_2, -x_3, ..., -x_n).
(End)
The partition polynomials with an index shift can be generated by (v(x) + d/dx)^n v(x). Cf. Guha, p. 12. - Tom Copeland, Jul 19 2018

Extensions

More terms from David W. Wilson
Additional comments from Wouter Meeussen, Mar 23 2003

A048996 Irregular triangle read by rows. Preferred multisets: numbers refining A007318 using format described in A036038.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 2, 2, 3, 3, 4, 1, 1, 2, 2, 1, 3, 6, 1, 4, 6, 5, 1, 1, 2, 2, 2, 3, 6, 3, 3, 4, 12, 4, 5, 10, 6, 1, 1, 2, 2, 2, 1, 3, 6, 6, 3, 3, 4, 12, 6, 12, 1, 5, 20, 10, 6, 15, 7, 1, 1, 2, 2, 2, 2, 3, 6, 6, 3, 3, 6, 1, 4, 12, 12, 12, 12, 4, 5, 20, 10, 30, 5, 6, 30, 20, 7, 21, 8, 1
Offset: 0

Views

Author

Keywords

Comments

This array gives in row n>=1 the multinomial numbers (call them M_0 numbers) m!/product((a_j)!,j=1..n) with the exponents of the partitions of n with number of parts m:=sum(a_j,j=1..n), given in the Abramowitz-Stegun order. See p. 831 of the given reference. See also the arrays for the M_1, M_2 and M_3 multinomial numbers A036038, A036039 and A036040 (or A080575).
For a signed version see A111786.
These M_0 multinomial numbers give the number of compositions of n >= 1 with parts corresponding to the partitions of n (in A-St order). See an n = 5 example below. The triangle with the summed entries of like number of parts m is A007318(n-1, m-1) (Pascal). - Wolfdieter Lang, Jan 29 2021

Examples

			Table starts:
[1]
[1]
[1, 1]
[1, 2, 1]
[1, 2, 1, 3, 1]
[1, 2, 2, 3, 3, 4, 1]
[1, 2, 2, 1, 3, 6, 1, 4, 6,  5, 1]
[1, 2, 2, 2, 3, 6, 3, 3, 4, 12, 4, 5, 10, 6, 1]
.
T(5,6) = 4 because there are four multisets using the first four digits {0,1,2,3}: 32100, 32110, 32210 and 33210
T(5,6) = 4 because there are 4 compositions of 5 that can be formed from the partition 2+1+1+1. - _Geoffrey Critzer_, May 19 2013
These 4 compositions 2+1+1+1, 1+2+1+1, 1+1+2+1 and 1+1+1+2 of 5 correspond to the 4 set partitions of [5] :={1,2,3,4,5}, with 4 blocks of consecutive numbers, namely {1,2},{3},{4},{5} and {1},{2,3},{4},{5} and {1},{2},{3,4},{5} and {1},{2},{3},{4,5}. - _Wolfdieter Lang_, May 30 2018
		

Crossrefs

Cf. A000670, A007318, A036035, A036038, A019538, A115621, A309004, A000079 (row sums), A000041 (row lengths).

Programs

  • Maple
    nmax:=9: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036040(n, m) := (add(q(t), t=1..n))!/(mul(q(t)!, t=1..n)); od: od: seq(seq(A036040(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
  • PARI
    C(sig)={my(S=Set(sig)); (#sig)!/prod(k=1, #S, (#select(t->t==S[k], sig))!)}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 7, print(Row(n))) } \\ Andrew Howroyd, Oct 18 2020
  • SageMath
    from collections import Counter
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A048996_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [factorial(len(p))//h(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A048996_row(n)) # Peter Luschny, Nov 02 2019 [corrected on notice from Sean A. Irvine, Apr 30 2022]
    

Formula

T(n,k) = A036040(n,k) * Factorial(A036043(n,k)) / A036038(n,k) = A049019(n,k) / A036038(n,k).
If the n-th partition is P, a(n) is the multinomial coefficient of the signature of P. - Franklin T. Adams-Watters, May 30 2006
T(n,k) = A309004(A036035(n,k)). - Andrew Howroyd, Oct 19 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001
a(0)=1 prepended by Andrew Howroyd, Oct 19 2020

A162663 Table by antidiagonals, T(n,k) is the number of partitions of {1..(nk)} that are invariant under a permutation consisting of n k-cycles.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 7, 5, 1, 3, 8, 31, 15, 1, 2, 16, 42, 164, 52, 1, 4, 10, 111, 268, 999, 203, 1, 2, 28, 70, 931, 1994, 6841, 877, 1, 4, 12, 258, 602, 9066, 16852, 51790, 4140, 1, 3, 31, 106, 2892, 6078, 99925, 158778, 428131, 21147, 1, 4, 22, 329, 1144, 37778, 70402, 1224579, 1644732, 3827967, 115975
Offset: 0

Views

Author

Keywords

Comments

The upper left corner of the array is T(0,1).
Without loss of generality, the permutation can be taken to be (1 2 ... k) (k+1 k+2 ... 2k) ... ((n-1)k+1 (n-1)k+2 ... nk).
Note that it is the partition that is invariant, not the individual parts. Thus for n=k=2 with permutation (1 2)(3 4), the partition 1,3|2,4 is counted; it maps to 2,4|1,3, which is the same partition.

Examples

			The table starts:
   1,   1,   1,   1,   1
   1,   2,   2,   3,   2
   2,   7,   8,  16,  10
   5,  31,  42, 111,  70
  15, 164, 268, 931, 602
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)
           *add(d^(j-1), d=divisors(k))*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Oct 29 2015
  • Mathematica
    max = 11; ClearAll[col]; col[k_] := col[k] =  CoefficientList[ Series[ Exp[ Sum[ (Exp[d*x] - 1)/d, {d, Divisors[k]}]], {x, 0, max}], x]*Range[0, max]!; t[n_, k_] := col[k][[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}] ] (* Jean-François Alcover, Aug 08 2012, after e.g.f. *)
  • PARI
    amat(n,m)=local(r);r=matrix(n,m,i,j,1);for(k=1,n-1,for(j=1,m,r[k+1,j]=sum (i=1,k,binomial(k-1,i-1)*sumdiv(j,d,r[k-i+1,j]*d^(i-1)))));r
    acol(n,k)=local(fn);fn=exp(sumdiv(k,d,(exp(d*x+x*O(x^n))-1)/d));vector(n+ 1,i,polcoeff(fn,i-1)*(i-1)!)

Formula

E.g.f. for column k: exp(Sum_{d|k} (exp(d*x) - 1) / d).
Equivalently, column k is the exponential transform of a(n) = Sum_{d|k} d^(n-1); this represents a set of n k-cycles, each repeating the same d elements (parts), but starting in different places.
T(n,k) = Sum_{P a partition of n} SP(P) * Product_( (sigma_{i-1}(k))^(P(i)-1) ), where SP is A036040 or A080575, and P(i) is the number of parts in P of size i.
T(n,k) = Sum_{j=0..n-1} A036073(n,j)*k^(n-1-j). - Andrey Zabolotskiy, Oct 22 2017

Extensions

Offset set to 0 by Alois P. Heinz, Oct 29 2015

A007446 Exponentiation of e.g.f. for primes.

Original entry on oeis.org

1, 2, 7, 31, 162, 973, 6539, 48410, 390097, 3389877, 31534538, 312151125, 3271508959, 36149187780, 419604275375, 5100408982825, 64743452239424, 856157851884881, 11768914560546973, 167841252874889898, 2479014206472819045, 37860543940437797897
Offset: 0

Views

Author

Keywords

Comments

From Tilman Neumann, Oct 05 2008: (Start)
a(n) is also given by
- substituting the primes (A000040) into (the simplest) Faa di Bruno's formula, or
- the complete Bell polynomial of the first n prime arguments, or
- computing n-th moments from the first n primes as cumulants
The examples show that the coefficients of the prime power products are just A036040/A080575 (these are just rearrangements of the same coefficients). Moreover, the prime products of the additional terms span the whole space of natural numbers, thus what we see here is a reordering of the natural numbers! (End)

Examples

			From _Tilman Neumann_, Oct 05 2008: (Start)
Let p_i denote the i-th prime A000040(i). Then
a(1)=2 = 1*p_1
a(2)=7 = 1*p_2 + 1*p_1^2
a(3)=31 = 1*p_3 + 3*p_2*p_1 + 1*p_1^3
a(4)=162= 1*p_4 + 4*p_3*p_1 + 3*p_2^2 + 6*p_2*p_1^2 + 1*p_1^4
a(5)=973= 1*p_5 + 5*p_4*p_1 + 10*p_3*p_2 + 10*p_3*p_1^2 + 15*p_2^2*p_1 + 10*p_2*p_1^3 + 1*p_1^5
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A036040, A080575. - Tilman Neumann, Oct 05 2008

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*ithprime(j)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 18 2015
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, j-1]*Prime[j]*a[n-j], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
    Table[Sum[BellY[n, k, Prime[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • MuPAD
    completeBellMatrix := proc(x,n)
    // x - vector x[1]...x[m], m>=n
    local i,j,M;
    begin
    M:=matrix(n,n): // zero-initialized
    for i from 1 to n-1 do
    M[i,i+1]:=-1:
    end_for:
    for i from 1 to n do
    for j from 1 to i do
    M[i,j] := binomial(i-1,j-1)*x[i-j+1]:
    end_for:
    end_for:
    return (M):
    end_proc:
    completeBellPoly := proc(x, n)
    begin
    return (linalg::det(completeBellMatrix(x,n))):
    end_proc:
    x:=[2,3,5,7,11,13,17,19,23,29]:
    for i from 1 to 10 do print(i,completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008

Formula

E.g.f.: exp(Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Nov 26 2017

A178867 Irregular triangle read by rows: multinomial coefficients, version 3; alternatively, row n gives coefficients of the n-th complete exponential Bell polynomial B_n(x_1, x_2, ...) with monomials sorted into some unknown order.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 4, 3, 1, 1, 10, 10, 15, 5, 10, 1, 1, 15, 20, 45, 15, 60, 6, 15, 15, 10, 1, 1, 21, 35, 105, 35, 210, 21, 105, 105, 70, 7, 105, 35, 21, 1, 1, 28, 56, 210, 70, 560, 56, 420, 420, 280, 28, 840, 280, 168, 8, 280, 210, 105, 56, 35, 28, 1
Offset: 1

Views

Author

Johannes W. Meijer and Manuel Nepveu (Manuel.Nepveu(AT)tno.nl), Jun 21 2010, Jun 24 2010

Keywords

Comments

"Exponential" here means in contrast to "ordinary", cf. A263633 (see Comtet). "Standard order" means as produced by Maple's "sort" command. - N. J. A. Sloane, Oct 28 2015
From Petros Hadjicostas, May 27 2020: (Start)
According to the Maple help files for the "sort" command, polynomials in multiple variables are "sorted in total degree with ties broken by lexicographic order (this is called graded lexicographic order)."
Thus, for example, x_1^2*x_3 = x_1*x_1*x_3 > x_1*x_2*x_2 = x_1*x_2^2, while x_1^2*x_4 = x_1*x_1*x_4 > x_1*x_2*x_3.
It appears that the authors' n-th row does give the coefficients of the n-th complete exponential Bell polynomial. Starting with row 6, however, it is unknown in what order the monomials of the n-th complete exponential Bell polynomial follow. It is definitely not the standard order nor any other known order. (End)
This version of the multinomial coefficients was discovered while calculating the probability that two 23 year old chessplayers would play each other on their birthday during a Dutch Chess Championship. This unique encounter took place on Apr 05 2008. Its probability is 1 in 50000 years, see the Meijer-Nepveu article.
The third version of the multinomial coefficients can be constructed with the basic multinomial coefficients A178866; see the formulas below. These multinomial coefficients appear in the columns of the multinomial coefficient matrix MCM[n,m] (n >= 1 and m >= 1).
We observe that the sum of the C(m,n) coefficients follow the A000296(n) sequence. The missing C(m, n=1) corresponds to A000296(1) = 0.
The number of multinomial coefficients in a triangle row leads to the partition numbers A000041. The row sums lead to the Bell numbers A000110.

Examples

			The first few complete exponential Bell polynomials are:
(1) x[1];
(2) x[1]^2 + x[2];
(3) x[1]^3 + 3*x[1]*x[2] + x[3];
(4) x[1]^4 + 6*x[1]^2*x[2] + 4*x[1]*x[3] + 3*x[2]^2 + x[4];
(5) x[1]^5 + 10*x[1]^3*x[2] + 10*x[1]^2*x[3] + 15*x[1]*x[2]^2 + 5*x[1]*x[4] + 10*x[2]*x[3] + x[5];
(6) x[1]^6 + 15*x[1]^4*x[2] + 20*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 15*x[1]^2*x[4] + 60*x[1]*x[2]*x[3] + 6*x[1]*x[5] + 15*x[2]^3 + 15*x[2]*x[4] + 10*x[3]^2 + x[6].
(7) x[1]^7 + 21*x[1]^5*x[2] + 35*x[1]^4*x[3] + 105*x[1]^3*x[2]^2 + 35*x[1]^3*x[4] + 210*x[1]^2*x[2]*x[3] + 21*x[1]^2*x[5] + 105*x[1]*x[2]^3 + 105*x[1]*x[2]*x[4] + 70*x[1]*x[3]^2 + 7*x[1]*x[6] + 105*x[2]^2*x[3] + 35*x[3]*x[4] + 21*x[2]*x[5] + x[7].
...
The first few rows of the triangle are
  1;
  1,  1;
  1,  3,  1;
  1,  6,  4,   3,  1;
  1, 10, 10,  15,  5,  10,  1;
  1, 15, 20,  45, 15,  60,  6,  15,  15, 10, 1;
  1, 21, 35, 105, 35, 210, 21, 105, 105, 70, 7, 105, 35, 21, 1;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 134, 307-310.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 2, Section 8 and table on page 49.

Crossrefs

Cf. A036040 (version 1 of multinomial coefficients), A080575 (version 2).

Programs

  • Maple
    with(combinat): nmax:=11; A178866(1):=1: T:=1: for n from 1 to nmax do y(n):=numbpart(n): P(n):=sort(partition(n)): k:=0: for r from 1 to y(n) do if P(n)[r,1]>1 then k:=k+1; B(k):=P(n)[r]: fi; od: A002865(n):=k; for k from 1 to A002865(n) do s:=0: j:=1: while sA002865(n))], `>`): for k from 1 to A002865(n) do M3[n,k]:=a[k] od: for k from 1 to A002865(n) do T:=T+1: A178866(T):= M3[n,k]: od: od:
    mmax:=nmax: n:=1: for m from 1 to mmax do MCM[n,m]:= A178866(n) od: n:=2: r:=1: for i from 2 to nmax do p:=A002865(i): r:=r+1: while p>0 do for m from 1 to mmax do MCM[n,m]:=A178866(n)*binomial(m,r) od: p:=p-1: n:=n+1: od: od: T:=0: for m from 1 to mmax do for n from 1 to numbpart(m) do T:=T+1; A178867(T):= MCM[n,m]; od: od; seq(A178867(n), n=1..T);
    # To produce the complete exponential Bell polynomials in standard order, from N. J. A. Sloane, Oct 28 2015
    M:=12;
    EE:=add(x[i]*t^i/i!,i=1..M);
    t1:=exp(EE);
    t2:=series(t1,t,M);
    Q:=k->sort(expand(k!*coeff(t2,t,k)));
    for k from 1 to 8 do lprint(k,Q(k)); od;
    # To produce the coefficients of the complete exponential Bell polynomials in standard order:
    triangle := proc(numrows) local E, s, Q;
    E := add(x[i]*t^i/i!, i=1..numrows);
    s := series(exp(E), t, numrows+1);
    Q := k -> sort(expand(k!*coeff(s, t, k)));
    seq(print(coeffs(Q(k))), k=1..numrows) end:
    triangle(6); # Peter Luschny, May 27 2020

Formula

G.f.: Exp(Sum_{i >= 1} x_i*t^i/i!) = 1 + Sum_{n >= 1} B_n(x_1, x_2,...)*t^n/n!. [Comtet, p. 134, Eq. [3b]. - N. J. A. Sloane, Oct 28 2015]
For m >= 1, the formulas for the first few matrix columns are:
MCM[1,m] = A178866(1)*C(m,0) = 1*C(m,0);
MCM[2,m] = A178866(2)*C(m,2) = 1*C(m,2);
MCM[3,m] = A178866(3)*C(m,3) = 1*C(m,3);
MCM[4,m] = A178866(4)*C(m,4) = 3*C(m,4) and
MCM[5,m] = A178866(5)*C(m,4) = 1*C(m,4);
MCM[6,m] = A178866(6)*C(m,5) = 10*C(m,5) and
MCM[7,m] = A178866(7)*C(m,5) = 1*C(m,5);
MCM[8,m] = A178866(8)*C(m,6) = 15*C(m,6) and
MCM[9,m] = A178866(9)*C(m,6) = 15*C(m,6) and
MCM[10,m] = A178866(10)*C(m,6) = 10*C(m,6) and
MCM[11,m] = A178866(11)*C(m,6) = 1*C(m,6).

Extensions

Alternative definition as coefficients of complete Bell polynomials added by N. J. A. Sloane, Oct 28 2015
Various sections and name edited by Petros Hadjicostas, May 28 2020

A260876 Number of m-shape set partitions, square array read by ascending antidiagonals, A(m,n) for m, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 5, 5, 1, 1, 11, 31, 15, 7, 1, 1, 36, 365, 379, 52, 11, 1, 1, 127, 6271, 25323, 6556, 203, 15, 1, 1, 463, 129130, 3086331, 3068521, 150349, 877, 22, 1, 1, 1717, 2877421, 512251515, 3309362716, 583027547, 4373461, 4140, 30
Offset: 0

Views

Author

Peter Luschny, Aug 02 2015

Keywords

Comments

A set partition of m-shape is a partition of a set with cardinality m*n for some n >= 0 such that the sizes of the blocks are m times the parts of the integer partitions of n.
If m = 0, all possible sizes are zero. Thus the number of set partitions of 0-shape is the number of integer partitions of n (partition numbers A000041).
If m = 1, the set is {1, 2, ..., n} and the set of all possible sizes are the integer partitions of n. Thus the number of set partitions of 1-shape is the number of set partitions (Bell numbers A000110).
If m = 2, the set is {1, 2, ..., 2n} and the number of set partitions of 2-shape is the number of set partitions into even blocks A005046.
From Petros Hadjicostas, Aug 06 2019: (Start)
Irwin (1916) proved the following combinatorial result: Assume r_1, r_2, ..., r_n are positive integers and we have r_1*r_2*...*r_n objects. We divide them into r_1 classes of r_2*r_3*...*r_n objects each, then each class into r_2 subclasses of r_3*...*r_n objects each, and so on. We call each such classification, without reference to order, a "classification" par excellence. He proved that the total number of classifications is (r_1*r_2*...*r_n)!/( r1! * (r_2!)^(r_1) * (r_3!)^(r_1*r_2) * ... (r_n!)^(r_1*r_2*...*r_{n-1}) ).
Apparently, this problem appeared in Carmichael's "Theory of Numbers".
This result can definitely be used to prove some special cases of my conjecture below. (End)

Examples

			[ n ] [0  1   2       3        4           5              6]
[ m ] ------------------------------------------------------
[ 0 ] [1, 1,  2,      3,       5,          7,            11]  A000041
[ 1 ] [1, 1,  2,      5,      15,         52,           203]  A000110
[ 2 ] [1, 1,  4,     31,     379,       6556,        150349]  A005046
[ 3 ] [1, 1, 11,    365,   25323,    3068521,     583027547]  A291973
[ 4 ] [1, 1, 36,   6271, 3086331, 3309362716, 6626013560301]  A291975
        A260878,A309725, ...
For example the number of set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] is 1, 84 and 280 respectively. Thus A(3,3) = 365.
Formatted as a triangle:
[1]
[1, 1]
[1, 1,   2]
[1, 1,   2,    3]
[1, 1,   4,    5,     5]
[1, 1,  11,   31,    15,    7]
[1, 1,  36,  365,   379,   52,  11]
[1, 1, 127, 6271, 25323, 6556, 203, 15]
.
From _Peter Luschny_, Aug 14 2019: (Start)
For example consider the case n = 4. There are five integer partitions of 4:
  P = [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. The shapes are m times the parts of the integer partitions: S(m) = [[4m], [3m, m], [2m, 2m], [2m, m, m], [m, m, m, m]].
* In the case m = 1 we look at set partitions of {1, 2, 3, 4} with sizes in  [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] which gives rise to [1, 4, 3, 6, 1] with sum 15.
* In the case m = 2 we look at set partitions of {1, 2, .., 8} with sizes in [[8], [6, 2], [4, 4], [4, 2, 2], [2, 2, 2, 2]] which gives rise to [1, 28, 35, 210, 105] with sum 379.
* In the case m = 0 we look at set partitions of {} with sizes in [[0], [0, 0], [0, 0], [0, 0, 0], [0, 0, 0, 0]] which gives rise to [1, 1, 1, 1, 1] with sum 5 (because the only partition of the empty set is the set that contains the empty set, thus from the definition T(0,4) = Sum_{S(0)} card({0}) = A000041(4) = 5).
If n runs through 0, 1, 2,... then the result is an irregular triangle in which the n-th row lists multinomials for partitions of [m*n] which have only parts which are multiples of m. These are the triangles A080575 (m = 1), A257490 (m = 2), A327003 (m = 3), A327004 (m = 4). In the case m = 0 the triangle is A000012 subdivided into rows of length A000041. See the cross references how this case integrates into the full picture.
(End)
		

Crossrefs

-----------------------------------------------------------------
[m] | multi- | sum of | main | by | comple- |
| nomials | rows | diagonal | size | mentary |
-----------------------------------------------------------------
Cf. A326996 (main diagonal), A260883 (ordered), A260875 (complementary).
Columns include A000012, A260878, A309725.

Programs

  • Maple
    A:= proc(m, n) option remember; `if`(m=0, combinat[numbpart](n),
          `if`(n=0, 1, add(binomial(m*n-1, m*k-1)*A(m, n-k), k=1..n)))
        end:
    seq(seq(A(d-n, n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    A[m_, n_] := A[m, n] = If[m==0, PartitionsP[n], If[n==0, 1, Sum[Binomial[m n - 1, m k - 1] A[m, n - k], {k, 1, n}]]];
    Table[Table[A[d - n, n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
  • SageMath
    def A260876(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return sum(SetPartitions(sum(s), s).cardinality() for s in shapes)
    for m in (0..4): print([A260876(m,n) for n in (0..6)])

Formula

From Petros Hadjicostas, Aug 02 2019: (Start)
A(m, 2) = 1 + (1/2) * binomial(2*m, m) for m >= 1.
A(m, 3) = 1 + binomial(3*m, m) + (3*m)!/(6 * (m!)^3) for m >= 1.
A(m, 4) = (1/4!) * multinomial(4*m, [m, m, m, m]) + (1/2) * multinomial(4*m, [2*m, m, m]) + multinomial(4*m, [m, 3*m]) + (1/2) * multinomial(4*m, [2*m, 2*m]) + 1 for m >= 1.
Conjecture: For n >= 0, let P be the set of all possible lists (a_1,...,a_n) of nonnegative integers such that a_1*1 + a_2*2 + ... + a_n*n = n. Consider terms of the form multinomial(n*m, m*[1,..., 1,2,..., 2,..., n,..., n])/(a_1! * a_2! * ... * a_n!), where in the list [1,...,1,2,...,2,...,n,...,n] the number 1 occurs a_1 times, 2 occurs a_2 times, ..., and n occurs a_n times. (Here a_n = 0 or 1.) Summing these terms over P we get A(m, n) provided m >= 1. (End)
Conjecture for a recurrence: A(m, n) = Sum_{k = 0..n-1} binomial(m*n - 1, m*k) * A(m, k) with A(m, 0) = 1 for m >= 1 and n >= 0. (Unfortunately, the recurrence does not hold for m = 0.) - Petros Hadjicostas, Aug 12 2019

A319182 Irregular triangle where T(n,k) is the number of set partitions of {1,...,n} with block-sizes given by the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 6, 1, 1, 5, 10, 15, 10, 10, 1, 1, 15, 6, 10, 15, 15, 60, 45, 20, 15, 1, 1, 7, 21, 35, 105, 21, 105, 70, 105, 35, 210, 105, 35, 21, 1, 1, 8, 28, 35, 28, 56, 210, 168, 280, 280, 105, 420, 56, 840, 280, 420, 70, 560, 210, 56, 28, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

A generalization of the triangle of Stirling numbers of the second kind, these are the coefficients appearing in the expansion of (x_1 + x_2 + x_3 + ...)^n in terms of augmented monomial symmetric functions. They also appear in Faa di Bruno's formula.

Examples

			Triangle begins:
  1
  1   1
  1   3   1
  1   3   4   6   1
  1   5  10  15  10  10   1
  1  15   6  10  15  15  60  45  20  15   1
The fourth row corresponds to the symmetric function identity (x_1 + x_2 + x_3 + ...)^4 = m(4) + 3 m(22) + 4 m(31) + 6 m(211) + m(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[numSetPtnsOfType/@primeMS/@Sort[Times@@Prime/@#&/@IntegerPartitions[n]],{n,7}]

Formula

T(n,k) = A124794(A215366(n,k)).

A102356 Problem 66 in Knuth's Art of Computer Programming, vol. 4, section 7.2.1.5 asks which integer partition of n produces the most set partitions. The n-th term of this sequence is the number of set partitions produced by that integer partition.

Original entry on oeis.org

1, 1, 1, 3, 6, 15, 60, 210, 840, 3780, 12600, 69300, 415800, 2702700, 12612600, 94594500, 756756000, 4288284000, 38594556000, 244432188000, 1833241410000, 17110253160000, 141159588570000, 1298668214844000, 10389345718752000, 108222351237000000, 1125512452864800000
Offset: 0

Views

Author

Dan Drake, Feb 21 2005

Keywords

Comments

a(n) is the maximum value in row n of A080575.

Examples

			a(4) = 6 because there are 6 set partitions of type {2,1,1}, namely 12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34; all other integer partitions of 4 produce fewer set partitions.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           max(seq(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 13 2012
  • Mathematica
    sp[l_] := (Total[l])!/(Apply[Times, Map[ #! &, l]]*Apply[Times, Map[Count[l, # ]! &, Range[Max[l]]]]) a[n_] := Max[Map[sp, Partitions[n]]]
    b[0, ] = 1; b[, ?NonPositive] = 0; b[n, i_] := b[n, i] = Max[Table[ b[n - i*j, i-1]*n!/i!^j/(n - i*j)!/j!, {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Oct 13 2011.
Typo in definition corrected by Klaus Leeb, Apr 30 2014.

A178866 Basic Multinomial Coefficients.

Original entry on oeis.org

1, 1, 1, 3, 1, 10, 1, 15, 15, 10, 1, 105, 35, 21, 1, 280, 210, 105, 56, 35, 28, 1, 1260, 1260, 378, 280, 126, 84, 36, 1, 6300, 3150, 2520, 2100, 1575, 945, 630, 210, 126, 120, 45, 1, 34650, 17325, 15400, 6930, 6930, 5775, 4620, 4620, 990, 462, 330, 165, 55, 1
Offset: 1

Views

Author

Johannes W. Meijer and Manuel Nepveu (Manuel.Nepveu(AT)tno.nl), Jun 21 2010, Jun 24 2010

Keywords

Comments

All multinomial coefficients (MC's) are equal, but some are more equal than others. These are the basic multinomial coefficients (BMC's). The ordinary multinomial coefficients can be generated with the basic multinomial coefficients; see A178867.
A number n can be partitioned in A000041(n) different ways. The seven partitions of n=5 are e.g. [5] = [1+4] = [2+3] = [1+1+3] = [1+2+2] = [1+1+1+2] = [1+1+1+1+1]. We observe that the k-th partition of n will consist of a certain number of 1s (i.e., "singles"), a certain number of 2s (i.e., "pairs"), a certain number of 3s (i.e., "triples"), a certain number of 4s (i.e., "4-tuples") and so on. We denote with qt the number of t-tuples in the k-th partition of n. We observe that for the third partition of n=5 there is one pair (q2=1) and one triple (q3=1).
The multinomial coefficients are defined by M3[n,k] = n!/product((t!)^qt*(qt)!, t = 1..n), see Abramowitz and Stegun. For the third partition M3[5,3] = 10, so there are 10 different ways of distributing one pair (B1, B1) and one triple (B2, B2, B2) over five positions.
We define the BMC's as the multinomial coefficients M3[n,k] for which there are no singles (q1=0) in the k-th partition of n for n>=2. Furthermore we define a(1) = 1.
The number of a(n) terms in a triangle row lead to sequence A002865(n) (n>=2). The row sums lead to sequence A000296(n) (n>=2).

Examples

			The first few triangle rows are (P = Pair; T = Triple; 4-T = 4 Tuple; etc..):
n = 1: 1;
n = 2: 1 (1*P);
n = 3: 1 (1*T);
n = 4: 3 (2*P), 1 (1*4-T);
n = 5: 10 (1*P+1*T), 1 (1*5-T);
n = 6: 15 (3*P), 15 (1*4-T+1*P), 10 (2*T), 1 (1*6-T);
n = 7: 105 (1*T+2*P), 35 (1*4-T+1*T), 21 (1*5-T+1*P), 1 (1*7-T);
		

Crossrefs

Cf. A036040 (version 1), A080575 (version 2) and A178867 (version 3).

Programs

  • Maple
    with(combinat): nmax:=11; A178866(1):=1: T:=1: for n from 1 to nmax do y(n):=numbpart(n): P(n):=sort(partition(n)): k:=0: for r from 1 to y(n) do if P(n)[r,1]>1 then k:=k+1; B(k):=P(n)[r]: fi; od: A002865(n):=k; for k from 1 to A002865(n) do s:=0: j:=1: while sA002865(n))], `>`): for k from 1 to A002865(n) do M3[n,k]:=a[k] od: for k from 1 to A002865(n) do T:=T+1: A178866(T):= M3[n,k]: od: od: seq(A178866(n),n=1..T);

Formula

n = sum(qt*t, t=1..n)
M3[n,k] = n!/product((t!)^qt*(qt)!, t = 1..n)
Showing 1-10 of 19 results. Next