cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007453 Number of unlabeled connected series-parallel posets with n nodes.

Original entry on oeis.org

1, 1, 3, 9, 30, 103, 375, 1400, 5380, 21073, 83950, 338878, 1383576, 5702485, 23696081, 99163323, 417553252, 1767827220, 7520966100, 32135955585, 137849390424, 593407692685, 2562695780058, 11099806544050, 48206136562750, 209876865026303, 915840095739301
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 25; A[_] = 1;
    Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms+1}]] + O[x]^(terms+1) // Normal, terms+1];
    A003430 = CoefficientList[A[x], x] // Rest;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i-1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    EULERi[A003430] (* Jean-François Alcover, Jan 23 2020 *)

Formula

See the 1989 and 1997 papers by Cameron cited above for generating functions, and the 1997 paper for asymptotics.
Inverse Euler transform of A003430. - Sean A. Irvine, Jan 04 2018
a(n) = A003430(n) - A007454(n) for n > 1. - Sean A. Irvine, Jan 04 2018

Extensions

Name corrected by Salah Uddin Mohammad, Jun 07 2020