A007490 Primes of form x^3 + y^3 + z^3 where x,y,z > 0.
3, 17, 29, 43, 73, 127, 179, 197, 251, 277, 281, 307, 349, 359, 397, 433, 521, 547, 557, 577, 593, 701, 757, 811, 853, 857, 863, 881, 919, 953, 1009, 1051, 1091, 1217, 1249, 1367, 1459, 1483, 1559, 1583, 1637, 1753, 1801, 1861, 1907, 2017, 2027, 2069, 2087
Offset: 1
Keywords
References
- W. SierpiĆski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 108.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- D. R. Heath-Brown, Primes represented by x^3 + 2y^3. Acta Mathematica 186 (2001), pp. 1-84.
- R. G. Wilson, V, Note, n.d.
Crossrefs
Cf. A003072 (all numbers).
Programs
-
Mathematica
nn = 3000; Select[Union[Flatten[Table[x^3 + y^3 + z^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}, {z, y, (nn - x^3 - y^3)^(1/3)}]]], PrimeQ] (* T. D. Noe, Sep 18 2012 *)
-
PARI
list(lim)=my(v=List(),k,t); lim\=1; for(x=1,sqrtnint(lim-2,3), for(y=1, min(sqrtnint(lim-x^3-1,3),x), k=x^3+y^3; for(z=1,min(sqrtnint(lim-k,3), y), if(isprime(t=k+z^3), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Mar 18 2010
Definition clarified by Charles R Greathouse IV, Sep 14 2015
Comments