cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007490 Primes of form x^3 + y^3 + z^3 where x,y,z > 0.

Original entry on oeis.org

3, 17, 29, 43, 73, 127, 179, 197, 251, 277, 281, 307, 349, 359, 397, 433, 521, 547, 557, 577, 593, 701, 757, 811, 853, 857, 863, 881, 919, 953, 1009, 1051, 1091, 1217, 1249, 1367, 1459, 1483, 1559, 1583, 1637, 1753, 1801, 1861, 1907, 2017, 2027, 2069, 2087
Offset: 1

Views

Author

Keywords

Comments

Heath-Brown shows that this sequence is infinite. - Charles R Greathouse IV, Jul 23 2009
The definition implies x, y, z > 0, so the representation (x=0, y=z=1) for the prime 2 or the representation (x=-4, y=-2, z=5) for the prime 53 are not admitted. - R. J. Mathar, Mar 19 2010

References

  • W. SierpiƄski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 108.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003072 (all numbers).

Programs

  • Mathematica
    nn = 3000; Select[Union[Flatten[Table[x^3 + y^3 + z^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}, {z, y, (nn - x^3 - y^3)^(1/3)}]]], PrimeQ] (* T. D. Noe, Sep 18 2012 *)
  • PARI
    list(lim)=my(v=List(),k,t); lim\=1; for(x=1,sqrtnint(lim-2,3), for(y=1, min(sqrtnint(lim-x^3-1,3),x), k=x^3+y^3; for(z=1,min(sqrtnint(lim-k,3), y), if(isprime(t=k+z^3), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 18 2010
Definition clarified by Charles R Greathouse IV, Sep 14 2015