cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A173587 Primes of the form x^3 + 2y^3, with x,y >0.

Original entry on oeis.org

3, 17, 29, 43, 127, 179, 251, 277, 359, 397, 433, 557, 593, 811, 857, 1051, 1367, 1459, 1583, 1753, 1801, 2017, 2027, 2213, 2251, 2447, 2663, 2689, 2729, 2789, 3221, 3331, 3391, 3457, 3581, 4421, 4519, 4787, 4967, 5653, 6037, 6217, 7109, 7883, 8081
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

Heath-Brown shows that this sequence is infinite.

Examples

			a(1) = 1^3+2*1^3 =3, prime. a(2) = 1^3 + 2* 2^3 = 17. a(7) = 1^3+2*r^3 =251.
		

Crossrefs

Programs

  • Maple
    T:=array(0..5000000): ind:=1: for x from 1 to 1000 do: for y from 1 to 1000 do: z:=x^3 + 2*y^3: if type(z,prime)=true then T[ind] :=z: ind :=ind+1: else fi: od: od: mini:=T[1]: ii:=1: for p from 1 to ind-1 do: for n from 1 to ind-1 do: if T[n] < mini then mini:= T[n]: ii:=n: else fi: od: print(mini): T[ii]:= 999999999999999: ii:=1: mini:=T[1] : od:
  • Mathematica
    formQ[p_] := Reduce[0 < x < p^(1/3) && 0 < y < (p/2)^(1/3) && x^3 + 2 y^3 == p, {x, y}, Integers] =!= False; Select[ Prime[ Range[1100]], formQ] (* Jean-François Alcover, Sep 28 2011 *)
  • PARI
    list(lim)=my(v=List(),t); for(y=1,sqrtn(lim\2,3), t=2*y^3; for(x=1,sqrtn(lim-t,3), if(isprime(t+x^3), listput(v,t+x^3)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Sep 28 2011

Extensions

Converted references to links - R. J. Mathar, Feb 24 2010

A085319 Primes which are the sum of three 5th powers.

Original entry on oeis.org

3, 307, 487, 9043, 16871, 17293, 17863, 23057, 32359, 32801, 33857, 36739, 40787, 43669, 50599, 59051, 59113, 62417, 65537, 76099, 101267, 104149, 107777, 135893, 160073, 161053, 164419, 249107, 249857, 256609, 259733, 266663, 338909, 340649
Offset: 1

Views

Author

Labos Elemer, Jul 01 2003

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584}. There must be an odd number of odd terms in the sum, either 3 odd terms (as with 3 = 1^5 + 1^5 + 1^5 and 487 = 1^5 + 3^5 + 3^5 and 59051 = 1^5 + 1^5 + 9^5) or two even terms and one odd term (as with 307 = 2^5 + 2^5 + 3^5 and 9043 = 3^5 + 4^5 + 6^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime. - Jonathan Vos Post, Sep 24 2006

Examples

			a(1) = 3 = 1^5 + 1^5 + 1^5.
a(2) = 307 = 2^5 + 2^5 + 3^5.
a(3) = 487 = 1^5 + 3^5 + 3^5.
a(4) = 9043 = 3^5 + 4^5 + 6^5.
a(5) = 16871 = 2^5 + 2^5 + 7^5.
a(6) = 17293 = 3^5 + 3^5 + 7^5.
		

Crossrefs

Programs

  • Mathematica
    lim = 10^6; nn = Floor[(lim - 2)^(1/5)]; t = {}; Do[p = i^5 + j^5 + k^5; If[p <= lim && PrimeQ[p], AppendTo[t, p]], {i, nn}, {j, i}, {k, j}]; t = Union[t] (* Vladimir Joseph Stephan Orlovsky and T. D. Noe, Jul 15 2011 *)
    Select[Prime[Range[2,30000]],Length[PowersRepresentations[#,3,5]]>0&] (* Harvey P. Dale, Nov 26 2014 *)

Extensions

A123032 was identical. - T. D. Noe, Jul 15 2011

A283017 Primes which are the sum of three nonzero 6th powers.

Original entry on oeis.org

3, 857, 1459, 4889, 50753, 51481, 66377, 119107, 210961, 262937, 308801, 525017, 531569, 539633, 562691, 766739, 797681, 840241, 1000793, 1046657, 1078507, 1772291, 1864873, 2303003, 2834443, 2986777, 3032641, 3107729, 3365777, 4757609, 4804201, 5135609, 5987593, 7530329, 7534361, 7743529, 8061041
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2017

Keywords

Comments

Primes of form x^6 + y^6 + z^6 where x, y, z > 0.

Examples

			3 = 1^6 + 1^6 + 1^6;
857 = 2^6 + 2^6 + 3^6;
1459 = 1^6 + 3^6 + 3^6, etc.
		

Crossrefs

Programs

  • Maple
    N:= 10^8: # to get all terms <= N
    S:= [seq(i^6, i=1..floor(N^(1/6)))]:
    S3:= {seq(seq(seq(S[i]+S[j]+S[k],k=1..j),j=1..i),i=1..nops(S))}:
    sort(convert(select(t -> t <= N and isprime(t), S3), list)); # Robert Israel, Mar 09 2017
  • Mathematica
    nn = 15; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^6)], # <= nn^6 && PrimeQ[#] &]
  • PARI
    list(lim)=my(v=List(),a6,a6b6,t); lim\=1; for(a=1,sqrtnint(lim-2,6), a6=a^6; for(b=1,min(sqrtnint(lim-a6-1,6),a), a6b6=a6+b^6; forstep(c=if(a6b6%2,2,1),min(sqrtnint(lim-a6b6,6),b),2, if(isprime(t=a6b6+c^6), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Mar 09 2017

A283018 Primes which are the sum of three positive 7th powers.

Original entry on oeis.org

3, 257, 82499, 823799, 1119863, 2099467, 4782971, 5063033, 5608699, 6880249, 7160057, 10018571, 10078253, 10094509, 10279937, 10389481, 10823671, 19503683, 20002187, 20388839, 24782969, 31584323, 35850379, 36189869, 37931147, 50614777, 57416131, 62765029, 64845797, 68355029, 71663617, 73028453
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2017

Keywords

Comments

Primes of form x^7 + y^7 + z^7 where x, y, z > 0.

Examples

			3 = 1^7 + 1^7 + 1^7;
257 = 1^7 + 2^7 + 2^7;
82499 = 3^7 + 3^7 + 5^7, etc.
		

Crossrefs

Programs

  • Maple
    N:= 10^9: # to get all terms <= N
    Res:= {}:
    for x from 1 to floor(N^(1/7)) do
      for y from 1 to min(x, floor((N-x^7)^(1/7))) do
        for z from 1 to min(y, floor((N-x^7-y^7)^(1/7))) do
          p:= x^7 + y^7 + z^7;
          if isprime(p) then Res:= Res union {p} fi
    od od od:
    sort(convert(Res,list)); # Robert Israel, Feb 26 2017
  • Mathematica
    nn = 14; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^7)], # <= nn^7 && PrimeQ[#] &]
  • PARI
    list(lim)=my(v=List(),x7,y7,t,p); for(x=1,sqrtnint(lim\3,7), x7=x^7; for(y=x,sqrtnint((lim-x7)\2,7), y7=y^7; t=x7+y7; forstep(z=y+(x+1)%2,sqrtnint((lim-t)\1,7),2, if(isprime(p=t+z^7), listput(v,p))))); Set(v) \\ Charles R Greathouse IV, Feb 27 2017

A283019 Primes which are the sum of three nonzero 8th powers.

Original entry on oeis.org

3, 6563, 72353, 137633, 787811, 1745153, 7444673, 44726593, 49202147, 61503553, 86093443, 91858243, 100006817, 100072097, 101686177, 107444417, 143046977, 200006561, 214756067, 257412163, 300452323, 430372577, 431661313, 435812033, 447149537, 452523713, 489805633, 530372321, 744340577
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2017

Keywords

Comments

Primes of form x^8 + y^8 + z^8 where x, y, z > 0.

Examples

			3 = 1^8 + 1^8 + 1^8;
6563 = 1^8 + 1^8 + 3^8;
72353 = 2^8 + 3^8 + 4^8, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 13; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^8)], # <= nn^8 && PrimeQ[#] &]
  • PARI
    list(lim)=my(v=List(),A,B,t); lim\=1; for(a=1,sqrtnint(lim-2,8), A=a^8; for(b=1,min(sqrtnint(lim-A-1,8),a), B=A+b^8; forstep(c=if(B%2,2,1),sqrtnint(lim-B,8),2, if(isprime(t=B+c^8), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Nov 05 2017

A123597 Primes of the form p^3 + q^3 + r^3, where p, q and r are primes.

Original entry on oeis.org

43, 179, 277, 359, 397, 593, 811, 1483, 2017, 2213, 2251, 2447, 2689, 4421, 4519, 4967, 5381, 6271, 7109, 7229, 9181, 9521, 10169, 11897, 12853, 13103, 13841, 14489, 16561, 17107, 20357, 24443, 24677, 25747, 26711, 27917, 30161, 30259, 31193, 31247, 32579, 36161
Offset: 1

Views

Author

Alexander Adamchuk, Nov 14 2006

Keywords

Comments

a(n) is a subset of A007490(n) = {3, 17, 29, 43, 73, 127, 179, 197, 251, 277, ...}, i.e., primes of the form x^3 + y^3 + z^3.

Examples

			a(1) = 43 because 43 = 2^3 + 2^3 + 3^3 is prime and 2^3 + 2^3 + 2^3 = 24 is composite.
		

Crossrefs

Cf. A007490 = Primes of form x^3 + y^3 + z^3.

Programs

  • Mathematica
    lst={};Do[Do[Do[p=n^3+m^3+k^3;If[PrimeQ[p]&&PrimeQ[n]&&PrimeQ[m]&&PrimeQ[k],AppendTo[lst,p]],{n,4!}],{m,4!}],{k,4!}];Take[Union[lst],16] (* Vladimir Joseph Stephan Orlovsky, May 23 2009 *)
    With[{nn=40},Select[Total/@Tuples[Prime[Range[nn]]^3,3],PrimeQ[#]&&#<= nn^3+ 16&]]//Union (* Harvey P. Dale, Sep 08 2021 *)

A272376 Twin primes both of which are the sum of three positive cubes.

Original entry on oeis.org

2267, 2269, 3527, 3529, 10331, 10333, 14867, 14869, 17207, 17209, 18521, 18523, 18917, 18919, 20231, 20233, 20357, 20359, 25577, 25579, 27791, 27793, 28547, 28549, 31247, 31249, 35279, 35281, 36899, 36901, 40697, 40699, 44279, 44281, 48779, 48781, 51479, 51481
Offset: 1

Views

Author

Carmine Suriano, Apr 28 2016

Keywords

Examples

			3527 and 3529 are terms since 3527=3^3+5^3+15^3 and 3529=1^3+11^3+13^3.
		

Crossrefs

Programs

  • Mathematica
    cu[n_] := {}!=Quiet@ IntegerPartitions[n,{3},Range[n^(1/3)]^3, 1]; Flatten@ Rest@ Reap@ Do[If[ PrimeQ[p+2] && cu[p] && cu[p+2], Sow[{p, p+2}]], {p, Prime@ Range@ 10000}] (* Giovanni Resta, Apr 28 2016 *)
  • PARI
    list(lim)=my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y), if(isprime(t=k+z^3), listput(v, t))))); v=Set(v); for(i=2,#v-1,if(v[i]!=v[i-1]+2 && v[i]!=v[i+1]-2, v[i]=0)); v=Set(v); v[3..#v] \\ Charles R Greathouse IV, Apr 29 2016

A271829 Prime powers p^k such that p^k = x^3 + y^3 + z^3 where x, y, z are positive integers and k > 1, is soluble.

Original entry on oeis.org

81, 729, 2187, 2809, 3481, 5041, 6859, 14641, 15625, 19683, 24389, 26569, 27889, 59049, 63001, 68921, 83521, 148877, 273529, 300763, 332929, 357911, 375769, 413449, 531441, 597529, 619369, 657721, 683929, 704969, 707281, 744769, 776161, 779689, 844561, 877969, 912673
Offset: 1

Views

Author

Altug Alkan, Apr 15 2016

Keywords

Comments

Obviously, this sequence is infinite.
Intersection of A003072 and A025475.
The first terms of this sequence are 3^4, 3^6, 3^7, 53^2, 59^2, 71^2, 19^3, 11^4, 5^6, 3^9, 29^3, 163^2, 167^2, 3^10, ...

Examples

			81 is a term because 81 = 3^4 = 3^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And[! PrimeQ@ #, PrimePowerQ@ #, Length[PowersRepresentations[#, 3, 3] /. {0, } -> Nothing] > 0] &] (* Michael De Vlieger, Apr 17 2016 *)
  • PARI
    list(lim) = my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y),if(isprimepower(k+z^3) && !isprime(k+z^3), listput(v, k+z^3))))); Set(v);

A336451 Primes of form x^3 - (x + 1)^3 + 3*z^3 or -x^3 + (x + 1)^3 - 3*z^3, with x,z >= 0.

Original entry on oeis.org

2, 5, 7, 13, 17, 19, 23, 29, 31, 37, 53, 59, 61, 67, 73, 79, 101, 103, 107, 113, 127, 131, 139, 149, 173, 179, 181, 191, 193, 199, 251, 263, 269, 271, 277, 307, 317, 331, 367, 373, 379, 383, 389, 397, 431, 439, 479, 503, 509, 521, 523, 547, 557, 563, 569, 571
Offset: 1

Views

Author

XU Pingya, Aug 31 2020

Keywords

Comments

For z <= 10^6, no other prime have this form in the first 105 primes.

Examples

			0^3 - 1^3 + 3*2^3 = 23, 23 is a term.
-3^3 + 4^3 - 3*0^3 = -4^3 + 5^3 - 3*2^3 = -52^3 + 53^3 - 3*14^3 = 37, 37 is a term.
		

Crossrefs

Programs

  • Mathematica
    p1 = Select[Prime[Range[105]], IntegerQ[(# - 1)/3] &];
    p2 = Select[Prime[Range[105]], IntegerQ[(# + 1)/3] &];
    n1 = Length@p1; n2 = Length@p2;
    r1 = (p1 - 1)/3; r2 = (p2 + 1)/3;
    t = {};
    Do[x = (z^3 + r1[[n]] + 1/4)^(1/2) - 1/2;
     If[IntegerQ[x], AppendTo[t, -x^3 + (x + 1)^3 - 3z^3]], {n, 1,
      n1}, {z, 0, 270}]
    Do[x = (z^3 - r2[[n]] + 1/4)^(1/2) - 1/2;
     If[IntegerQ[x], AppendTo[t, x^3 - (x + 1)^3 + 3z^3]], {n, 1,
      n2}, {z, 0, 170}]
    Union@t
Showing 1-9 of 9 results.