0, 0, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 6, 1, 3, 6, 4, 3, 3, 2, 3, 4, 3, 4, 2, 3, 3, 5, 4, 4, 7, 1, 2, 5, 1, 5, 7, 4, 2, 3, 7, 4, 7, 2, 4, 7, 4, 4, 5, 2, 5, 8, 4, 3, 3, 5, 2, 8, 5, 4, 3, 10, 7, 8, 2, 3, 5, 5, 3, 6, 3, 3, 14, 4, 3, 12, 3, 7, 7, 5, 6, 8, 7, 5, 9, 9, 4, 4, 3, 6, 10, 8
Offset: 1
A219726
Integers of the form x^3 + 2y^3 (x, y > 0).
Original entry on oeis.org
3, 10, 17, 24, 29, 43, 55, 62, 66, 80, 81, 118, 127, 129, 136, 141, 155, 179, 192, 218, 232, 251, 253, 258, 270, 277, 314, 344, 345, 359, 375, 397, 433, 440, 459, 466, 471, 496, 514, 528, 557, 566, 593, 640, 648, 687, 694, 713, 731, 745, 750, 762, 775, 783
Offset: 1
-
m = 10^3; Union[Flatten@Table[x^3 + 2 y^3, {x, m^(1/3)}, {y, ((m - x^3)/2)^(1/3)}]]
-
is(n)=for(y=1,sqrtnint((n-1)\2,3), if(ispower(n-2*y^3,3),return(1)));0 \\ Charles R Greathouse IV, Apr 07 2020
-
list(lim)=my(v=List(),Y); lim\=1; for(y=1,sqrtnint((lim-1)\2,3), Y=2*y^3; for(x=1,sqrtnint(lim-Y,3), listput(v,x^3+Y))); Set(v) \\ Charles R Greathouse IV, Apr 07 2020
A219728
Squares of the form x^3 + 2*y^3, with x, y > 0.
Original entry on oeis.org
81, 5041, 5184, 10000, 46225, 59049, 77841, 83521, 322624, 331776, 640000, 685584, 707281, 1265625, 2958400, 3157729, 3418801, 3674889, 3779136, 4157521, 4981824, 5345344, 5602689, 5736025, 7290000, 9150625, 9529569, 10725625, 12257001, 14776336, 15904144
Offset: 1
81: (x = 3, y = 3), 5041: (x = 17, y = 4).
-
With[{nn=300},Select[Flatten[Table[x^3+2y^3,{x,nn},{y,nn}]],IntegerQ[ Sqrt[#]]&]//Union] (* Harvey P. Dale, Oct 24 2018 *)
A199800
Number of ways to write n = p+q with p, 6q-1 and 6q+1 all prime.
Original entry on oeis.org
0, 0, 1, 2, 2, 2, 2, 3, 2, 3, 0, 4, 2, 4, 3, 2, 2, 3, 3, 5, 3, 3, 3, 4, 4, 3, 2, 4, 3, 5, 3, 4, 3, 5, 5, 6, 3, 4, 3, 5, 5, 5, 6, 5, 4, 5, 5, 6, 7, 5, 4, 5, 4, 7, 6, 4, 4, 4, 5, 6, 6, 5, 6, 7, 4, 5, 2, 4, 7, 5, 7, 4, 5, 6, 7, 7, 7, 5, 6, 4, 7, 4, 7, 7, 6, 5, 3, 5, 8, 7, 7, 5, 5, 6, 4, 5, 4, 5, 8, 7
Offset: 1
a(3)=1 since 3=2+1 with 2, 6*1-1 and 6*1+1 all prime.
-
a[n_]:=a[n]=Sum[If[PrimeQ[n-k]==True&&PrimeQ[6k-1]==True&&PrimeQ[6k+1]==True,1,0],{k,1,n-1}]
Do[Print[n," ",a[n]],{n,1,100}]
A236574
Primes p with prime(p)^3 + 2*p^3 and p^3 + 2*prime(p)^3 both prime.
Original entry on oeis.org
3, 79, 997, 2657, 3697, 4513, 6947, 8887, 9547, 16187, 22697, 26479, 31319, 37463, 39139, 39887, 43573, 43987, 45667, 47387, 47743, 47819, 48221, 54217, 56923, 57373, 74017, 74149, 74707, 75533, 93251, 100043
Offset: 1
a(1) = 3 since prime(3)^3 + 2*3^3 = 125 + 54 = 179 and 3^3 + 2*prime(3)^3 = 27 + 2*125 = 277 are both prime, but 2^3 + 2*prime(2)^3 = 62 is composite.
-
p[n_]:=PrimeQ[Prime[n]^3+2*n^3]&&PrimeQ[n^3+2*Prime[n]^3]
n=0;Do[If[p[Prime[k]],n=n+1;Print[n," ",Prime[k]]],{k,1,10000}]
Select[Prime[Range[10000]],AllTrue[{Prime[#]^3+2*#^3,#^3+2*Prime[ #]^3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 20 2017 *)
A212287
Primes of the form m*p^2 + 1, where p is prime and m <= p^2.
Original entry on oeis.org
5, 13, 17, 19, 37, 73, 101, 151, 197, 251, 401, 491, 601, 677, 727, 883, 1373, 1453, 1471, 1667, 2029, 2179, 2663, 3389, 3469, 3631, 3719, 4057, 4357, 4733, 5477, 6359, 6761, 7019, 8093, 8713, 8837, 9127, 9439, 9803, 9923, 10093, 10141, 10831, 10891, 11617, 11831, 12101, 12343
Offset: 1
13 is a member since 13 = 3 * 2^2 + 1 with 3 <= 2^2 and 3 is prime.
-
list(lim)=my(v=List(),t);lim=lim\1-.5;forprime(p=2,sqrt(lim), for(a=1,min(lim\p^2,p^2),if(isprime(t=a*p^2+1),listput(v,t))));vecsort(Vec(v),,8)
A236619
a(n) = |{0 < k < n: prime(m)^3 + 2*m^3 and m^3 + 2*prime(m)^3 are both prime with m = 3*phi(k) + phi(n-k) - 1}|, where phi(.) is Euler's totient function.
Original entry on oeis.org
0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 4, 0, 1, 3, 0, 2, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 4, 3, 4, 2, 0, 2, 5, 4, 2, 4, 2, 2, 3, 5, 5, 6
Offset: 1
a(51) = 1 since 3*phi(35) + phi(51-35) - 1 = 3*24 + 8 - 1 = 79 with prime(79)^3 + 2*79^3 = 401^3 + 2*79^3 = 65467279 and 79^3 + 2*prime(79)^3 = 79^3 + 2*401^3 = 129455441 both prime.
-
p[n_]:=PrimeQ[Prime[n]^3+2*n^3]&&PrimeQ[n^3+2*Prime[n]^3]
f[n_,k_]:=3*EulerPhi[k]+EulerPhi[n-k]-1
a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
Table[a[n],{n,1,100}]
Comments