cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A173587 Primes of the form x^3 + 2y^3, with x,y >0.

Original entry on oeis.org

3, 17, 29, 43, 127, 179, 251, 277, 359, 397, 433, 557, 593, 811, 857, 1051, 1367, 1459, 1583, 1753, 1801, 2017, 2027, 2213, 2251, 2447, 2663, 2689, 2729, 2789, 3221, 3331, 3391, 3457, 3581, 4421, 4519, 4787, 4967, 5653, 6037, 6217, 7109, 7883, 8081
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

Heath-Brown shows that this sequence is infinite.

Examples

			a(1) = 1^3+2*1^3 =3, prime. a(2) = 1^3 + 2* 2^3 = 17. a(7) = 1^3+2*r^3 =251.
		

Crossrefs

Programs

  • Maple
    T:=array(0..5000000): ind:=1: for x from 1 to 1000 do: for y from 1 to 1000 do: z:=x^3 + 2*y^3: if type(z,prime)=true then T[ind] :=z: ind :=ind+1: else fi: od: od: mini:=T[1]: ii:=1: for p from 1 to ind-1 do: for n from 1 to ind-1 do: if T[n] < mini then mini:= T[n]: ii:=n: else fi: od: print(mini): T[ii]:= 999999999999999: ii:=1: mini:=T[1] : od:
  • Mathematica
    formQ[p_] := Reduce[0 < x < p^(1/3) && 0 < y < (p/2)^(1/3) && x^3 + 2 y^3 == p, {x, y}, Integers] =!= False; Select[ Prime[ Range[1100]], formQ] (* Jean-François Alcover, Sep 28 2011 *)
  • PARI
    list(lim)=my(v=List(),t); for(y=1,sqrtn(lim\2,3), t=2*y^3; for(x=1,sqrtn(lim-t,3), if(isprime(t+x^3), listput(v,t+x^3)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Sep 28 2011

Extensions

Converted references to links - R. J. Mathar, Feb 24 2010

A219725 Integers expressible as x^3 + 2*y^3 (x, y > 0) in two ways.

Original entry on oeis.org

1459, 3391, 6758, 6875, 6913, 8317, 11672, 17826, 18523, 19034, 27128, 29845, 32581, 39393, 54064, 54125, 55000, 55304, 66536, 78733, 79939, 82522, 91557, 93376, 95519, 100171, 104073, 125054, 140610, 142608, 148184, 152272, 167399, 172565, 182375, 182466
Offset: 1

Views

Author

Zak Seidov, Nov 26 2012

Keywords

Examples

			1459 = 1^3 + 2*9^3 = 11^3 + 2*4^3.
		

Crossrefs

A219726 Integers of the form x^3 + 2y^3 (x, y > 0).

Original entry on oeis.org

3, 10, 17, 24, 29, 43, 55, 62, 66, 80, 81, 118, 127, 129, 136, 141, 155, 179, 192, 218, 232, 251, 253, 258, 270, 277, 314, 344, 345, 359, 375, 397, 433, 440, 459, 466, 471, 496, 514, 528, 557, 566, 593, 640, 648, 687, 694, 713, 731, 745, 750, 762, 775, 783
Offset: 1

Views

Author

Zak Seidov, Nov 26 2012

Keywords

Comments

D. R. Heath-Brown proved in 2001 that there are infinitely many prime numbers in this sequence. These primes are in A173587. - Bernard Schott, Apr 07 2020

Crossrefs

Programs

  • Mathematica
    m = 10^3; Union[Flatten@Table[x^3 + 2 y^3, {x, m^(1/3)}, {y, ((m - x^3)/2)^(1/3)}]]
  • PARI
    is(n)=for(y=1,sqrtnint((n-1)\2,3), if(ispower(n-2*y^3,3),return(1)));0 \\ Charles R Greathouse IV, Apr 07 2020
    
  • PARI
    list(lim)=my(v=List(),Y); lim\=1; for(y=1,sqrtnint((lim-1)\2,3), Y=2*y^3; for(x=1,sqrtnint(lim-Y,3), listput(v,x^3+Y))); Set(v) \\ Charles R Greathouse IV, Apr 07 2020

A219728 Squares of the form x^3 + 2*y^3, with x, y > 0.

Original entry on oeis.org

81, 5041, 5184, 10000, 46225, 59049, 77841, 83521, 322624, 331776, 640000, 685584, 707281, 1265625, 2958400, 3157729, 3418801, 3674889, 3779136, 4157521, 4981824, 5345344, 5602689, 5736025, 7290000, 9150625, 9529569, 10725625, 12257001, 14776336, 15904144
Offset: 1

Views

Author

Zak Seidov, Nov 26 2012

Keywords

Comments

Subsequence of A219726.

Examples

			81: (x = 3, y = 3), 5041: (x = 17,  y = 4).
		

Crossrefs

Programs

  • Mathematica
    With[{nn=300},Select[Flatten[Table[x^3+2y^3,{x,nn},{y,nn}]],IntegerQ[ Sqrt[#]]&]//Union] (* Harvey P. Dale, Oct 24 2018 *)

A219783 Smallest integer expressible as x^3 + 2*y^3 (x, y > 0) in exactly n ways.

Original entry on oeis.org

3, 1459, 314953199, 575012796875
Offset: 1

Views

Author

Zak Seidov, Nov 27 2012

Keywords

Comments

a(5) > 10^17. - Donovan Johnson, Nov 29 2012

Examples

			3: (x, y) = (1, 1)
1459: (x,y) = (1,9), (11,4)
314953199: (x,y) = (121, 539), (463, 476), (649, 275)
575012796875: (x, y) = (275, 6600), (6413, 5379), (7225, 4625), (8195, 2310)
		

Crossrefs

A219784 Integers expressible as x^3 + 2*y^3 (x, y > 0) exactly in three ways.

Original entry on oeis.org

314953199, 432015625, 924667442, 1664304379, 1953968750, 2519625592, 3456125000, 4600102375, 7397339536, 8503736373, 11664421875, 13314435032, 15631750000, 20157004736, 24966020934, 27649000000, 36800819000, 38000696086, 39369149875, 44936218233, 52757156250, 54001953125, 59178716288
Offset: 1

Views

Author

Zak Seidov, Nov 27 2012

Keywords

Comments

Smallest integer with 4 ways: 575012796875: {x, y} = {8195, 2310}, {7225, 4625}, {6413, 5379}, {275, 6600}.

Examples

			314953199: (x,y) = (121, 539), (463, 476), (649, 275).
		

Crossrefs

Showing 1-6 of 6 results.