cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A123032 Duplicate of A085319.

Original entry on oeis.org

3, 307, 487, 9043, 16871, 17293, 17863, 23057, 32359, 32801, 33857, 36739, 40787, 43669, 50599, 59051, 59113, 62417, 65537, 76099, 101267, 104149, 107777, 135893, 160073, 161053, 164419, 249107, 249857, 256609, 259733, 266663, 338909, 340649
Offset: 1

Views

Author

Keywords

A283017 Primes which are the sum of three nonzero 6th powers.

Original entry on oeis.org

3, 857, 1459, 4889, 50753, 51481, 66377, 119107, 210961, 262937, 308801, 525017, 531569, 539633, 562691, 766739, 797681, 840241, 1000793, 1046657, 1078507, 1772291, 1864873, 2303003, 2834443, 2986777, 3032641, 3107729, 3365777, 4757609, 4804201, 5135609, 5987593, 7530329, 7534361, 7743529, 8061041
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2017

Keywords

Comments

Primes of form x^6 + y^6 + z^6 where x, y, z > 0.

Examples

			3 = 1^6 + 1^6 + 1^6;
857 = 2^6 + 2^6 + 3^6;
1459 = 1^6 + 3^6 + 3^6, etc.
		

Crossrefs

Programs

  • Maple
    N:= 10^8: # to get all terms <= N
    S:= [seq(i^6, i=1..floor(N^(1/6)))]:
    S3:= {seq(seq(seq(S[i]+S[j]+S[k],k=1..j),j=1..i),i=1..nops(S))}:
    sort(convert(select(t -> t <= N and isprime(t), S3), list)); # Robert Israel, Mar 09 2017
  • Mathematica
    nn = 15; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^6)], # <= nn^6 && PrimeQ[#] &]
  • PARI
    list(lim)=my(v=List(),a6,a6b6,t); lim\=1; for(a=1,sqrtnint(lim-2,6), a6=a^6; for(b=1,min(sqrtnint(lim-a6-1,6),a), a6b6=a6+b^6; forstep(c=if(a6b6%2,2,1),min(sqrtnint(lim-a6b6,6),b),2, if(isprime(t=a6b6+c^6), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Mar 09 2017

A283018 Primes which are the sum of three positive 7th powers.

Original entry on oeis.org

3, 257, 82499, 823799, 1119863, 2099467, 4782971, 5063033, 5608699, 6880249, 7160057, 10018571, 10078253, 10094509, 10279937, 10389481, 10823671, 19503683, 20002187, 20388839, 24782969, 31584323, 35850379, 36189869, 37931147, 50614777, 57416131, 62765029, 64845797, 68355029, 71663617, 73028453
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2017

Keywords

Comments

Primes of form x^7 + y^7 + z^7 where x, y, z > 0.

Examples

			3 = 1^7 + 1^7 + 1^7;
257 = 1^7 + 2^7 + 2^7;
82499 = 3^7 + 3^7 + 5^7, etc.
		

Crossrefs

Programs

  • Maple
    N:= 10^9: # to get all terms <= N
    Res:= {}:
    for x from 1 to floor(N^(1/7)) do
      for y from 1 to min(x, floor((N-x^7)^(1/7))) do
        for z from 1 to min(y, floor((N-x^7-y^7)^(1/7))) do
          p:= x^7 + y^7 + z^7;
          if isprime(p) then Res:= Res union {p} fi
    od od od:
    sort(convert(Res,list)); # Robert Israel, Feb 26 2017
  • Mathematica
    nn = 14; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^7)], # <= nn^7 && PrimeQ[#] &]
  • PARI
    list(lim)=my(v=List(),x7,y7,t,p); for(x=1,sqrtnint(lim\3,7), x7=x^7; for(y=x,sqrtnint((lim-x7)\2,7), y7=y^7; t=x7+y7; forstep(z=y+(x+1)%2,sqrtnint((lim-t)\1,7),2, if(isprime(p=t+z^7), listput(v,p))))); Set(v) \\ Charles R Greathouse IV, Feb 27 2017

A283019 Primes which are the sum of three nonzero 8th powers.

Original entry on oeis.org

3, 6563, 72353, 137633, 787811, 1745153, 7444673, 44726593, 49202147, 61503553, 86093443, 91858243, 100006817, 100072097, 101686177, 107444417, 143046977, 200006561, 214756067, 257412163, 300452323, 430372577, 431661313, 435812033, 447149537, 452523713, 489805633, 530372321, 744340577
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2017

Keywords

Comments

Primes of form x^8 + y^8 + z^8 where x, y, z > 0.

Examples

			3 = 1^8 + 1^8 + 1^8;
6563 = 1^8 + 1^8 + 3^8;
72353 = 2^8 + 3^8 + 4^8, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 13; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^8)], # <= nn^8 && PrimeQ[#] &]
  • PARI
    list(lim)=my(v=List(),A,B,t); lim\=1; for(a=1,sqrtnint(lim-2,8), A=a^8; for(b=1,min(sqrtnint(lim-A-1,8),a), B=A+b^8; forstep(c=if(B%2,2,1),sqrtnint(lim-B,8),2, if(isprime(t=B+c^8), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Nov 05 2017

A161610 Primes which are the sum of 3 distinct positive 5th powers.

Original entry on oeis.org

9043, 17863, 32801, 40787, 43669, 50599, 62417, 76099, 101267, 104149, 107777, 135893, 160073, 164419, 249107, 249857, 256609, 259733, 266663, 340649, 348833, 365639, 430343, 504061, 545843, 554663, 604649, 627901, 640949, 762743, 776183
Offset: 1

Views

Author

Keywords

Comments

Intersection of the A000040 with the sequence 276, 1057, 1268, 1299, 3158,... of sums of 3 distinct positive 5th powers. [R. J. Mathar, Jun 18 2009]

Examples

			9043=6^5+4^5+3^5. 17863=7^5+4^5+2^5. 32801=8^5+2^5+1^5. 40787=8^5+6^5+3^5, 43669=8^5+6^5+5^5.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[p=n^5+m^5+k^5;If[PrimeQ[p],AppendTo[lst,p]],{n,m+1,3*4!}], {m,k+1,6!}],{k,2*6!}];Take[Union[lst],5! ]
    Module[{upto=10^6},Select[Total/@Subsets[Range[Ceiling[Surd[upto,5]]]^5,{3}], PrimeQ[#]&&#<=upto&]]//Union (* Harvey P. Dale, May 01 2019 *)
Showing 1-5 of 5 results.