cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A085319 Primes which are the sum of three 5th powers.

Original entry on oeis.org

3, 307, 487, 9043, 16871, 17293, 17863, 23057, 32359, 32801, 33857, 36739, 40787, 43669, 50599, 59051, 59113, 62417, 65537, 76099, 101267, 104149, 107777, 135893, 160073, 161053, 164419, 249107, 249857, 256609, 259733, 266663, 338909, 340649
Offset: 1

Views

Author

Labos Elemer, Jul 01 2003

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584}. There must be an odd number of odd terms in the sum, either 3 odd terms (as with 3 = 1^5 + 1^5 + 1^5 and 487 = 1^5 + 3^5 + 3^5 and 59051 = 1^5 + 1^5 + 9^5) or two even terms and one odd term (as with 307 = 2^5 + 2^5 + 3^5 and 9043 = 3^5 + 4^5 + 6^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime. - Jonathan Vos Post, Sep 24 2006

Examples

			a(1) = 3 = 1^5 + 1^5 + 1^5.
a(2) = 307 = 2^5 + 2^5 + 3^5.
a(3) = 487 = 1^5 + 3^5 + 3^5.
a(4) = 9043 = 3^5 + 4^5 + 6^5.
a(5) = 16871 = 2^5 + 2^5 + 7^5.
a(6) = 17293 = 3^5 + 3^5 + 7^5.
		

Crossrefs

Programs

  • Mathematica
    lim = 10^6; nn = Floor[(lim - 2)^(1/5)]; t = {}; Do[p = i^5 + j^5 + k^5; If[p <= lim && PrimeQ[p], AppendTo[t, p]], {i, nn}, {j, i}, {k, j}]; t = Union[t] (* Vladimir Joseph Stephan Orlovsky and T. D. Noe, Jul 15 2011 *)
    Select[Prime[Range[2,30000]],Length[PowersRepresentations[#,3,5]]>0&] (* Harvey P. Dale, Nov 26 2014 *)

Extensions

A123032 was identical. - T. D. Noe, Jul 15 2011
Showing 1-1 of 1 results.