cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A230076 a(n) = (A007521(n)-1)/4.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 25, 27, 37, 39, 43, 45, 49, 57, 67, 69, 73, 79, 87, 93, 97, 99, 105, 115, 127, 135, 139, 153, 163, 165, 169, 175, 177, 183, 189, 193, 199, 205, 207, 213, 219, 235, 249, 253, 255, 265, 267, 273, 277, 279, 295, 303, 307
Offset: 1

Views

Author

Wolfdieter Lang, Oct 24 2013

Keywords

Comments

Because A007521(n) are the primes congruent 5 (mod 8) it is clear that a(n) is congruent 1 (mod 2), that is odd.
2*a(n) = A055034(A007521(n)), the degree of the minimal polynomial C(A007521(n), x) of 2*rho(Pi/A007521(n)) (see A187360).

Examples

			The minimal polynomial C(A007521(2), x) = C(13, x) has degree 6 = 2*a(2) because C(13, x) = x^6 - x^5 - 5*x^4 + 4*x^3 + 6*x^2 - 3*x -1.
		

Crossrefs

Cf. A007521, A055034, A187360, 4*A005123 (1 (mod 8) case), A186287 (3 (mod 8) case), A186302 (7 (mod 8) case).

Programs

  • Mathematica
    (Select[8*Range[0, 200] + 5, PrimeQ] - 1)/4 (* Amiram Eldar, Jun 08 2022 *)

Formula

a(n) = (A007521(n)-1)/4.

A095011 Number of 8k+5 primes (A007521) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 1, 1, 3, 2, 6, 11, 20, 35, 63, 118, 216, 407, 759, 1424, 2686, 5094, 9652, 18472, 35068, 67068, 128421, 246403, 473647, 911479, 1757076, 3390256, 6552075, 12675294, 24545280, 47583568, 92332958, 179313476, 348551899, 678031524, 1319932086, 2571422341
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Programs

Formula

a(n) = A095014(n) - A095010(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A096634 Let p = n-th prime == 5 (mod 8) (A007521); a(n) = smallest prime q such that p is not a square mod q.

Original entry on oeis.org

3, 5, 3, 5, 3, 7, 3, 11, 3, 5, 3, 7, 3, 7, 3, 5, 3, 3, 7, 5, 3, 5, 13, 3, 3, 11, 3, 5, 3, 7, 3, 3, 13, 5, 5, 3, 3, 3, 7, 5, 5, 3, 5, 3, 7, 3, 7, 5, 3, 5, 3, 5, 3, 5, 3, 3, 3, 11, 11, 5, 3, 13, 5, 3, 17, 3, 7, 5, 3, 3, 7, 11, 7, 3, 3, 5, 3, 3, 3, 7, 5, 3, 3, 3, 11, 3, 13, 5, 3, 3, 7, 3, 3, 11, 5, 3, 3, 5, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jun 24 2004

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) local p;
      p:= 1;
      do
        p:= nextprime(p);
        if numtheory:-quadres(n,p) = -1 then return p fi
      od
    end proc:
    map(g, select(isprime, [seq(i,i=5..10000,8)])); # Robert Israel, Apr 17 2023
  • Mathematica
    f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 5 &]

A096639 Smallest prime p == 5 mod 8 (A007521) and p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).

Original entry on oeis.org

5, 13, 61, 109, 421, 1621, 7309, 8941, 13381, 82021, 365509, 300301, 1336141, 644869, 8658589, 3462229, 6810301, 16145221, 165163909, 43030381, 163384621, 249623581, 2283397141, 1272463669, 2055693949
Offset: 0

Views

Author

Robert G. Wilson v, Jun 24 2004

Keywords

Comments

Same as smallest prime p == 5 mod 8 with the property that the Legendre symbol (p|q) = 1 for the first n odd primes q = prime(k+1), k = 1, 2, ..., n, and (p|q) = -1 for q = prime(n+2).

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; If[Mod[p, 8] == 5, a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]]], {n, 10^9}]; t

Extensions

Better name from Jonathan Sondow, Mar 07 2013

A096640 Smallest prime p == 7 mod 8 (A007521) and p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).

Original entry on oeis.org

23, 7, 31, 79, 631, 751, 2311, 21319, 48799, 82471, 256279, 78439, 1768831, 1365079, 2631511, 1427911, 4355311, 5715319, 49196359, 117678031, 180628639, 475477759, 452980999
Offset: 0

Views

Author

Robert G. Wilson v, Jun 24 2004

Keywords

Comments

Same as smallest prime p == 7 mod 8 with the property that the Legendre symbol (p|q) = 1 for the first n odd primes q = prime(k+1), k = 1, 2, ..., n, and (p|q) = -1 for q = prime(n+2).

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; If[Mod[p, 8] == 7, a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]]], {n, 10^9}]; t

Extensions

Better name from Jonathan Sondow, Mar 07 2013

A157115 Alternate terms of A007519, A007520, A007521, A007522.

Original entry on oeis.org

17, 3, 5, 7, 41, 11, 13, 23, 73, 19, 29, 31, 89, 43, 37, 47, 97, 59, 53, 71, 113, 67, 61, 79, 137, 83, 101, 103, 193, 107, 109, 127, 233, 131, 149, 151, 241, 139, 157, 167, 257, 163, 173, 191, 281, 179, 181, 199, 313, 211, 197, 223, 337, 227, 229, 239, 353, 251, 269
Offset: 1

Views

Author

Zak Seidov and N. J. A. Sloane, Feb 23 2009

Keywords

Comments

Or, read the following table by columns:
17,41,73,89,97,113,137,193,233,241,257,281,313,337,353,401,409,... (primes = = 1 mod 8)
3,11,19,43,59,67,83,107,131,139,163,179,211,227,251,283,307,331,... (primes == 3 mod 8)
5,13,29,37,53,61,101,109,149,157,173,181,197,229,269,277,293,317,... (primes == 5 mod 8)
7,23,31,47,71,79,103,127,151,167,191,199,223,239,263,271,311,359,... (primes == 7 mod 8)

Examples

			The first four primes congruent to (1,3,5,7) mod 8 are 17,3,5,7, hence a(1..4)=17,3,5,7;
The next four primes congruent to (1,3,5,7) mod 8 are 41,11,13,23, hence a(5..8)=41,11,13,23, etc.
		

Crossrefs

Programs

  • Mathematica
    s[i_]:=(c=0;a=2*i-1;Reap[Do[If[PrimeQ[a],c++;Sow[a]];If[c>99,Break[],a = a+8],{10^8}]][[2,1]]);Flatten[Transpose[Table[s[i],{i,4}]]]; (* Zak Seidov, Jan 16 2013 *)

A186299 (A007521(n)-1)/2.

Original entry on oeis.org

2, 6, 14, 18, 26, 30, 50, 54, 74, 78, 86, 90, 98, 114, 134, 138, 146, 158, 174, 186, 194, 198, 210, 230, 254, 270, 278, 306, 326, 330, 338, 350, 354, 366, 378, 386, 398, 410, 414, 426, 438, 470, 498, 506, 510, 530, 534, 546, 554, 558, 590, 606
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Formula

a(n) = A186300(n)-1.

A186300 (A007521(n)+1)/2.

Original entry on oeis.org

3, 7, 15, 19, 27, 31, 51, 55, 75, 79, 87, 91, 99, 115, 135, 139, 147, 159, 175, 187, 195, 199, 211, 231, 255, 271, 279, 307, 327, 331, 339, 351, 355, 367, 379, 387, 399, 411, 415, 427, 439, 471, 499, 507, 511, 531, 535, 547, 555, 559, 591, 607
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Formula

a(n) = A186299(n)+1.

A186301 a(n) = A007521(n) - 2.

Original entry on oeis.org

3, 11, 27, 35, 51, 59, 99, 107, 147, 155, 171, 179, 195, 227, 267, 275, 291, 315, 347, 371, 387, 395, 419, 459, 507, 539, 555, 611, 651, 659, 675, 699, 707, 731, 755, 771, 795, 819, 827, 851, 875, 939, 995, 1011, 1019, 1059, 1067, 1091, 1107, 1115, 1179, 1211
Offset: 1

Views

Author

Marco Matosic, Feb 17 2011

Keywords

Crossrefs

Cf. A007521.

Extensions

a(52) corrected by Georg Fischer, Jun 27 2020

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014
Showing 1-10 of 52 results. Next