A007533 a(n) = (5*n + 1)^2 + 4*n + 1.
2, 41, 130, 269, 458, 697, 986, 1325, 1714, 2153, 2642, 3181, 3770, 4409, 5098, 5837, 6626, 7465, 8354, 9293, 10282, 11321, 12410, 13549, 14738, 15977, 17266, 18605, 19994, 21433, 22922, 24461, 26050, 27689, 29378, 31117, 32906, 34745, 36634, 38573, 40562, 42601
Offset: 0
References
- W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 323.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- W. Sierpiński, Elementary Theory of Numbers, Warszawa 1964.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A154355.
Programs
-
Magma
[(5*n+1)^2 + 4*n+1: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
Mathematica
Table[25n^2+14n+2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{2,41,130},40] (* Harvey P. Dale, Dec 18 2013 *)
-
PARI
a(n)=25*n^2 + 14*n + 2 \\ Charles R Greathouse IV, May 02 2011
Formula
From Bruno Berselli, Dec 11 2011: (Start)
a(n) = 25*n^2 + 14*n + 2.
G.f.: (2 + 35*x + 13*x^2)/(1-x)^3. (End)
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: (2 + 39*x + 25*x^2)*exp(x).
a(n) = A154355(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments