cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007542 Successive integers produced by Conway's PRIMEGAME.

Original entry on oeis.org

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132, 116, 308, 364, 68, 4, 30, 225, 12375, 10875, 28875, 25375, 67375, 79625, 14875, 13650, 2550, 2340, 1980, 1740, 4620, 4060, 10780, 12740, 2380, 2184, 408, 152
Offset: 1

Views

Author

Keywords

Comments

Conway's PRIMEGAME produces the terms 2^prime in increasing order.
From Daniel Forgues, Jan 20 2016: (Start)
Pairs (n, a(n)) such that a(n) = 2^k are (1, 2^1), (20, 2^2), (70, 2^3), (282, 2^5), (711, 2^7), (2376, 2^11), (3894, 2^13), (8103, 2^17), ...
Numbers n such that a(n) = 2^k are 1, 20, 70, 282, 711, 2376, 3894, 8103, ... [This is 1 + A007547. - N. J. A. Sloane, Jan 25 2016] (End)

References

  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007542 n = a007542_list !! (n-1)
    a007542_list = iterate a203907 2  -- Reinhard Zumkeller, Jan 24 2012
    
  • Maple
    l:= [17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55]: a:= proc(n) option remember; global l; local p, k; if n=1 then 2 else p:= a(n-1); for k while not type(p*l[k], integer) do od; p*l[k] fi end: seq(a(n), n=1..50); # Alois P. Heinz, Aug 12 2009
  • Mathematica
    conwayFracs := {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55}; a[1] = 2; A007542[n_] := A007542[n] = (p = A007542[n - 1]; k = 1; While[ ! IntegerQ[p * conwayFracs[[k]]], k++]; p * conwayFracs[[k]]); Table[A007542[n], {n, 42}] (* Jean-François Alcover, Jan 23 2012, after Alois P. Heinz *)
  • Python
    from fractions import Fraction
    nums = [17, 78, 19, 23, 29, 77, 95, 77,  1, 11, 13, 15, 1, 55] # A202138
    dens = [91, 85, 51, 38, 33, 29, 23, 19, 17, 13, 11,  2, 7,  1] # A203363
    PRIMEGAME = [Fraction(num, den) for num, den in zip(nums, dens)]
    def succ(n, program):
      for i in range(len(program)):
        if (n*program[i]).denominator == 1: return (n*program[i]).numerator
    def orbit(start, program, steps):
      orb = [start]
      for s in range(1, steps): orb.append(succ(orb[-1], program))
      return orb
    print(orbit(2, PRIMEGAME, steps=42)) # Michael S. Branicky, Feb 15 2021

Formula

a(n+1) = A203907(a(n)), a(1) = 2. [Reinhard Zumkeller, Jan 24 2012]