A034785 a(n) = 2^(n-th prime).
4, 8, 32, 128, 2048, 8192, 131072, 524288, 8388608, 536870912, 2147483648, 137438953472, 2199023255552, 8796093022208, 140737488355328, 9007199254740992, 576460752303423488, 2305843009213693952
Offset: 1
Examples
a(4) = 128 because the fourth prime number is 7 and 2^7 = 128.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index to divisibility sequences.
Crossrefs
Programs
-
Haskell
a034785 = (2 ^) . a000040 -- Reinhard Zumkeller, Feb 07 2015, Jan 24 2012
-
Magma
[2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Apr 29 2014
-
Mathematica
2^Prime@Range@40 (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
-
PARI
a(n)=1<
Charles R Greathouse IV, Apr 07 2012 -
Python
from sympy import prime def A034785(n): return 1<
Chai Wah Wu, Aug 09 2024
Formula
From Amiram Eldar, Aug 11 2020: (Start)
a(n) = 2^A000040(n).
Sum_{n>=1} 1/a(n) = A051006. (End)
From Amiram Eldar, Nov 22 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A184083.
Product_{n>=1} (1 - 1/a(n)) = A184082. (End)
Extensions
More terms from James Sellers, Feb 04 2000
Comments