cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007550 Natural numbers exponentiated twice.

Original entry on oeis.org

1, 4, 20, 127, 967, 8549, 85829, 962308, 11895252, 160475855, 2343491207, 36795832297, 617662302441, 11031160457672, 208736299803440, 4169680371133507, 87648971646028515, 1933298000313801349, 44633323736412392093, 1076069422794010119112
Offset: 1

Views

Author

Keywords

Comments

The subsequence of primes (for n = 4, 5, 7) begins: 127, 967, 85829. The subsequence of semiprimes (for n = 2, 6) begins: 4, 8549. - Jonathan Vos Post, Feb 09 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: a:= exptr(exptr(n->n)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    a[n_] := Sum[k^(n-k)*Binomial[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 11 2014, after Olivier Gérard *)

Formula

E.g.f.: exp(G(x) - 1) - 1, where G(x) = exp(x*exp(x)) = e.g.f. for A000248; clarified by Ilya Gutkovskiy, Jun 25 2018
a(n) = sum( k^(n - k) binomial(n,k) bell(k), k = 0..n ). - Olivier Gérard, Oct 24 2007