cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007552 Exponentiation of Fibonacci numbers.

Original entry on oeis.org

1, 3, 10, 42, 204, 1127, 6924, 46704, 342167, 2700295, 22799218, 204799885, 1947993126, 19540680497, 206001380039, 2275381566909, 26261810071925, 315969045744894, 3954454344433658, 51382626410402336, 691956435942841207
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1, f(n-1) +f(n-2)) end: a:= proc(n) option remember; f(n) +add(binomial(n-1, k-1) *f(k) *a(n-k), k=1..n-1) end: seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    f[n_] := f[n] = If[n<2, 1, f[n-1]+f[n-2]]; a[n_] := a[n] = f[n]+Sum [Binomial[n-1, k-1]*f[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
  • PARI
    Vec(serlaplace(exp( serconvol(Ser(1/(1-x-x^2)),exp(x))-1)))
    /* ==> [1, 1, 3, 10, 42, 204, 1127, 6924, 46704,...] (note offset 0) */
    /* Joerg Arndt, Jun 16 2010 */

Formula

E.g.f.: exp(exp(x/2)*(sqrt(5)*cosh(x*sqrt(5)/2)+sinh(x*sqrt(5)/2))/sqrt(5)-1)-1. - Vladimir Kruchinin, Feb 27 2015