cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256180 Exponential transform of the Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 6, 21, 86, 404, 2121, 12264, 77272, 525941, 3839706, 29891370, 246906569, 2154904856, 19799299506, 190904273049, 1926229186162, 20288311652672, 222568337565537, 2537998989244956, 30029233006187756, 368050599579654557, 4665833729558724030
Offset: 0

Views

Author

Alois P. Heinz, Mar 18 2015

Keywords

Crossrefs

Row sums of A346415.

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *F(j) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[BellY[n, k, Fibonacci[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

E.g.f: exp(1/sqrt(5)*(exp((1+sqrt(5))*x/2)-exp((1-sqrt(5))*x/2))).
E.g.f: exp(2/5*sqrt(5)*exp(x/2)*sinh(sqrt(5)*x/2)).

A006701 Exponentiation of g.f. for Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 5, 13, 60, 246, 1266, 6679, 39568, 247940, 1677435, 12020295, 91463410, 733490265, 6189608760, 54746987035, 506444804075, 4887127598817, 49096724251235, 512474550910080, 5548429401985372, 62208756548406172, 721256031012180537, 8635815672831322186
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[-1] = 1; a[n_] := a[n] = Sum[Binomial[n, k]*Fibonacci[k]*a[n - k - 1], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Jun 08 2021 *)
  • PARI
    a(n) = if (n==-1, 1, sum(k=0, n, binomial(n,k)*fibonacci(k)*a(n-k-1))); \\ Michel Marcus, Jun 11 2017

Formula

a(-1) = 1, a(n) = Sum_{k=0..n} binomial(n, k) * A000045(k) * a(n-k-1). - Sean A. Irvine, Jun 11 2017
Showing 1-2 of 2 results.