cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A112005 Logarithmic transform of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 0, 1, -2, 4, -17, 82, -384, 2189, -14850, 107404, -845537, 7400482, -70093256, 709888645, -7721333538, 89774204756, -1107347563761, 14456268008050, -199350032354000, 2893615098314941, -44089764970860290, 703841452185590236, -11747695951762870497
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*t(n-j)*
          binomial(n, j)*a(j), j=1..n-1)/n))(i->(<<0|1>, <1|1>>^i)[1, 2])
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    FullSimplify[CoefficientList[Series[Log[1 + 2*E^(x/2)*Sinh[Sqrt[5]*x/2] / Sqrt[5]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Sep 04 2014 *)

Formula

E.g.f. log(1 + A(x)) with the e.g.f. A(x):=exp(x/2)*sinh(sqrt(5)*x/2)/(sqrt(5)/2) of A000045.
a(n) ~ -(n-1)! / r^n, where r = -1.37807491378452630283968362340785266756... is the root of the equation 2*(5-3*sqrt(5))*r + (sqrt(5)-5) * (log(5/4) + 2*log(1-coth(sqrt(5)*r/2))) = 0. - Vaclav Kotesovec, Sep 04 2014

A346415 Triangle T(n,k), n>=0, 0<=k<=n, read by rows, where column k is (1/k!) times the k-fold exponential convolution of Fibonacci numbers with themselves.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 3, 11, 6, 1, 0, 5, 35, 35, 10, 1, 0, 8, 115, 180, 85, 15, 1, 0, 13, 371, 910, 630, 175, 21, 1, 0, 21, 1203, 4494, 4445, 1750, 322, 28, 1, 0, 34, 3891, 22049, 30282, 16275, 4158, 546, 36, 1, 0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2021

Keywords

Comments

The sequence of column k>0 satisfies a linear recurrence with constant coefficients of order k+1.

Examples

			Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,     1;
  0,  2,     3,      1;
  0,  3,    11,      6,      1;
  0,  5,    35,     35,     10,      1;
  0,  8,   115,    180,     85,     15,     1;
  0, 13,   371,    910,    630,    175,    21,    1;
  0, 21,  1203,   4494,   4445,   1750,   322,   28,   1;
  0, 34,  3891,  22049,  30282,  16275,  4158,  546,  36,  1;
  0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1;
  ...
		

Crossrefs

Columns k=0-4 give: A000007, A000045, A014335, A014337, A014341.
T(n+j,n) for j=0-2 give: A000012, A000217, A000914.
Row sums give A256180.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*b(n-j)
          *binomial(n-1, j-1)*(<<0|1>, <1|1>>^j)[1, 2]), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(k=0, 0^n, `if`(k=1,
           combinat[fibonacci](n), (q-> add(binomial(n, j)*
           b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    T:= (n, k)-> b(n, k)/k!:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, 0^n, If[k == 1, Fibonacci[n], With[{q = Quotient[k, 2]}, Sum[Binomial[n, j] b[j, q] b[n-j, k-q], {j, 0, n}]]]];
    T[n_, k_] := b[n, k]/k!;
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 2nd Maple program *)

A006701 Exponentiation of g.f. for Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 5, 13, 60, 246, 1266, 6679, 39568, 247940, 1677435, 12020295, 91463410, 733490265, 6189608760, 54746987035, 506444804075, 4887127598817, 49096724251235, 512474550910080, 5548429401985372, 62208756548406172, 721256031012180537, 8635815672831322186
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[-1] = 1; a[n_] := a[n] = Sum[Binomial[n, k]*Fibonacci[k]*a[n - k - 1], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Jun 08 2021 *)
  • PARI
    a(n) = if (n==-1, 1, sum(k=0, n, binomial(n,k)*fibonacci(k)*a(n-k-1))); \\ Michel Marcus, Jun 11 2017

Formula

a(-1) = 1, a(n) = Sum_{k=0..n} binomial(n, k) * A000045(k) * a(n-k-1). - Sean A. Irvine, Jun 11 2017

A007552 Exponentiation of Fibonacci numbers.

Original entry on oeis.org

1, 3, 10, 42, 204, 1127, 6924, 46704, 342167, 2700295, 22799218, 204799885, 1947993126, 19540680497, 206001380039, 2275381566909, 26261810071925, 315969045744894, 3954454344433658, 51382626410402336, 691956435942841207
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1, f(n-1) +f(n-2)) end: a:= proc(n) option remember; f(n) +add(binomial(n-1, k-1) *f(k) *a(n-k), k=1..n-1) end: seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    f[n_] := f[n] = If[n<2, 1, f[n-1]+f[n-2]]; a[n_] := a[n] = f[n]+Sum [Binomial[n-1, k-1]*f[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
  • PARI
    Vec(serlaplace(exp( serconvol(Ser(1/(1-x-x^2)),exp(x))-1)))
    /* ==> [1, 1, 3, 10, 42, 204, 1127, 6924, 46704,...] (note offset 0) */
    /* Joerg Arndt, Jun 16 2010 */

Formula

E.g.f.: exp(exp(x/2)*(sqrt(5)*cosh(x*sqrt(5)/2)+sinh(x*sqrt(5)/2))/sqrt(5)-1)-1. - Vladimir Kruchinin, Feb 27 2015

A279271 Exponential transform of the Pell numbers.

Original entry on oeis.org

1, 1, 3, 12, 57, 320, 2065, 14954, 119585, 1044184, 9867633, 100185294, 1086173121, 12510549116, 152422123321, 1956974934290, 26391647743937, 372769201632784, 5500416368181921, 84594395013757398, 1353277808896178145, 22476374660911200068, 386925983827921358665, 6893254434792968631674
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 12 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 57*x^4/4! + 320*x^5/5! + 2065*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    Range[0, 23]! CoefficientList[Series[Exp[Exp[x] Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, 23}], x]
  • PARI
    x='x + O('x^30); round( Vec(serlaplace(exp(exp(x)*sinh(sqrt(2)*x) /sqrt(2)))) ) \\ G. C. Greubel, Dec 13 2016

Formula

E.g.f.: exp(exp(x)*sinh(sqrt(2)*x)/sqrt(2)).

A294222 Exponential transform of the Lucas numbers (A000204).

Original entry on oeis.org

1, 1, 4, 14, 69, 372, 2320, 15913, 119938, 978456, 8586177, 80456488, 800905726, 8429875989, 93453556378, 1087491751050, 13244265431889, 168370713583760, 2229127899764052, 30671277674880073, 437770190804865414, 6470590710038358164, 98891186448861721537, 1560548838446810788940, 25394750159240696915562
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 25 2017

Keywords

Examples

			E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 14*x^3/3! + 69*x^4/4! + 372*x^5/5! + 2320*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    Range[0, 24]! CoefficientList[Series[Exp[2 Exp[x/2] Cosh[Sqrt[5] x/2] - 2], {x, 0, 24}], x]
    a[n_] := a[n] = Sum[a[n - k] Binomial[n - 1, k - 1] LucasL[k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]

Formula

E.g.f.: exp(2*exp(x/2)*cosh(sqrt(5)*x/2) - 2).
Showing 1-7 of 7 results.