A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A112005
Logarithmic transform of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 0, 1, -2, 4, -17, 82, -384, 2189, -14850, 107404, -845537, 7400482, -70093256, 709888645, -7721333538, 89774204756, -1107347563761, 14456268008050, -199350032354000, 2893615098314941, -44089764970860290, 703841452185590236, -11747695951762870497
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to logarithmic numbers
-
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*t(n-j)*
binomial(n, j)*a(j), j=1..n-1)/n))(i->(<<0|1>, <1|1>>^i)[1, 2])
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 06 2018
-
FullSimplify[CoefficientList[Series[Log[1 + 2*E^(x/2)*Sinh[Sqrt[5]*x/2] / Sqrt[5]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Sep 04 2014 *)
A346415
Triangle T(n,k), n>=0, 0<=k<=n, read by rows, where column k is (1/k!) times the k-fold exponential convolution of Fibonacci numbers with themselves.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 3, 11, 6, 1, 0, 5, 35, 35, 10, 1, 0, 8, 115, 180, 85, 15, 1, 0, 13, 371, 910, 630, 175, 21, 1, 0, 21, 1203, 4494, 4445, 1750, 322, 28, 1, 0, 34, 3891, 22049, 30282, 16275, 4158, 546, 36, 1, 0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 3, 11, 6, 1;
0, 5, 35, 35, 10, 1;
0, 8, 115, 180, 85, 15, 1;
0, 13, 371, 910, 630, 175, 21, 1;
0, 21, 1203, 4494, 4445, 1750, 322, 28, 1;
0, 34, 3891, 22049, 30282, 16275, 4158, 546, 36, 1;
0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1;
...
-
b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*b(n-j)
*binomial(n-1, j-1)*(<<0|1>, <1|1>>^j)[1, 2]), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(k=0, 0^n, `if`(k=1,
combinat[fibonacci](n), (q-> add(binomial(n, j)*
b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
T:= (n, k)-> b(n, k)/k!:
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, k_] := b[n, k] = If[k == 0, 0^n, If[k == 1, Fibonacci[n], With[{q = Quotient[k, 2]}, Sum[Binomial[n, j] b[j, q] b[n-j, k-q], {j, 0, n}]]]];
T[n_, k_] := b[n, k]/k!;
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 2nd Maple program *)
A006701
Exponentiation of g.f. for Fibonacci numbers.
Original entry on oeis.org
0, 1, 1, 5, 13, 60, 246, 1266, 6679, 39568, 247940, 1677435, 12020295, 91463410, 733490265, 6189608760, 54746987035, 506444804075, 4887127598817, 49096724251235, 512474550910080, 5548429401985372, 62208756548406172, 721256031012180537, 8635815672831322186
Offset: 0
-
a[-1] = 1; a[n_] := a[n] = Sum[Binomial[n, k]*Fibonacci[k]*a[n - k - 1], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Jun 08 2021 *)
-
a(n) = if (n==-1, 1, sum(k=0, n, binomial(n,k)*fibonacci(k)*a(n-k-1))); \\ Michel Marcus, Jun 11 2017
A007552
Exponentiation of Fibonacci numbers.
Original entry on oeis.org
1, 3, 10, 42, 204, 1127, 6924, 46704, 342167, 2700295, 22799218, 204799885, 1947993126, 19540680497, 206001380039, 2275381566909, 26261810071925, 315969045744894, 3954454344433658, 51382626410402336, 691956435942841207
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002. [pLink to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
-
f:= proc(n) option remember; `if`(n<2, 1, f(n-1) +f(n-2)) end: a:= proc(n) option remember; f(n) +add(binomial(n-1, k-1) *f(k) *a(n-k), k=1..n-1) end: seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
-
f[n_] := f[n] = If[n<2, 1, f[n-1]+f[n-2]]; a[n_] := a[n] = f[n]+Sum [Binomial[n-1, k-1]*f[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
-
Vec(serlaplace(exp( serconvol(Ser(1/(1-x-x^2)),exp(x))-1)))
/* ==> [1, 1, 3, 10, 42, 204, 1127, 6924, 46704,...] (note offset 0) */
/* Joerg Arndt, Jun 16 2010 */
A279271
Exponential transform of the Pell numbers.
Original entry on oeis.org
1, 1, 3, 12, 57, 320, 2065, 14954, 119585, 1044184, 9867633, 100185294, 1086173121, 12510549116, 152422123321, 1956974934290, 26391647743937, 372769201632784, 5500416368181921, 84594395013757398, 1353277808896178145, 22476374660911200068, 386925983827921358665, 6893254434792968631674
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 57*x^4/4! + 320*x^5/5! + 2065*x^6/6! + ...
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric W. Weisstein MathWorld, Exponential Transform
- Eric Weisstein's World of Mathematics, Pell Number
-
Range[0, 23]! CoefficientList[Series[Exp[Exp[x] Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, 23}], x]
-
x='x + O('x^30); round( Vec(serlaplace(exp(exp(x)*sinh(sqrt(2)*x) /sqrt(2)))) ) \\ G. C. Greubel, Dec 13 2016
A294222
Exponential transform of the Lucas numbers (A000204).
Original entry on oeis.org
1, 1, 4, 14, 69, 372, 2320, 15913, 119938, 978456, 8586177, 80456488, 800905726, 8429875989, 93453556378, 1087491751050, 13244265431889, 168370713583760, 2229127899764052, 30671277674880073, 437770190804865414, 6470590710038358164, 98891186448861721537, 1560548838446810788940, 25394750159240696915562
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 14*x^3/3! + 69*x^4/4! + 372*x^5/5! + 2320*x^6/6! + ...
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Exponential Transform
- Eric Weisstein's World of Mathematics, Lucas Number
-
Range[0, 24]! CoefficientList[Series[Exp[2 Exp[x/2] Cosh[Sqrt[5] x/2] - 2], {x, 0, 24}], x]
a[n_] := a[n] = Sum[a[n - k] Binomial[n - 1, k - 1] LucasL[k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
Showing 1-7 of 7 results.
Comments