cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A256180 Exponential transform of the Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 6, 21, 86, 404, 2121, 12264, 77272, 525941, 3839706, 29891370, 246906569, 2154904856, 19799299506, 190904273049, 1926229186162, 20288311652672, 222568337565537, 2537998989244956, 30029233006187756, 368050599579654557, 4665833729558724030
Offset: 0

Views

Author

Alois P. Heinz, Mar 18 2015

Keywords

Crossrefs

Row sums of A346415.

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *F(j) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[BellY[n, k, Fibonacci[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

E.g.f: exp(1/sqrt(5)*(exp((1+sqrt(5))*x/2)-exp((1-sqrt(5))*x/2))).
E.g.f: exp(2/5*sqrt(5)*exp(x/2)*sinh(sqrt(5)*x/2)).

A274805 The logarithmic transform of sigma(n).

Original entry on oeis.org

1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The logarithmic transform [LOG] transforms an input sequence b(n) into the output sequence a(n). The LOG transform is the inverse of the exponential transform [EXP], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell’s formula. For information about the EXP transform see A274804. The logarithmic transform is related to the inverse multinomial transform, see A274844 and the first formula.
The definition of the LOG transform, see the second formula, shows that n >= 1. To preserve the identity EXP[LOG[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the LOG transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the logarithmic transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the logarithmic transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A001187 and the first formula. The second program uses the definition of the logarithmic transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the logarithmic transform, see A274804.

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Some LOG transform pairs are, n >= 1: A006125(n-1) and A033678(n); A006125(n) and A001187(n); A006125(n+1) and A062740(n); A000045(n) and A112005(n); A000045(n+1) and A007553(n); A000040(n) and A007447(n); A000051(n) and (-1)*A263968(n-1); A002416(n) and A062738(n); A000290(n) and A033464(n-1); A029725(n-1) and A116652(n-1); A052332(n) and A002031(n+1); A027641(n)/A027642(n) and (-1)*A060054(n+1)/(A075180(n-1).

Programs

  • Maple
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
  • PARI
    N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017

Formula

a(n) = b(n) - Sum_{k = 1..n-1}((k*binomial(n, k)*b(n-k)*a(k))/n), n >= 1, with b(n) = A000203(n) = sigma(n).
E.g.f. log(1+ Sum_{n >= 1}(b(n)*x^n/n!)), n >= 1, with b(n) = A000203(n) = sigma(n).

A112006 A logarithmic transform of the Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 2, 7, 32, 194, 1473, 13424, 142722, 1734155, 23704880, 360035434, 6015135425, 109631190368, 2164636394634, 46027826357795, 1048622566013472, 25482771281706578, 657965393430769025, 17988006311731338448
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Crossrefs

Formula

E.g.f.: -log(1 - A(x)) with the e.g.f. A(x):=exp(x/2)*sinh(sqrt(5)*x/2)/(sqrt(5)/2) of A000045.
a(n) = Fibonacci(n) + Sum_{k=1..n-1} binomial(n-1,k-1) * a(k) * Fibonacci(n-k). - Ilya Gutkovskiy, Jul 11 2020

A323721 Expansion of e.g.f. log(2*exp(x/2)*cosh(sqrt(5)*x/2) - 1).

Original entry on oeis.org

0, 1, 2, -3, -6, 50, -13, -1498, 6234, 59145, -748678, -1415238, 92962179, -411570250, -11993577118, 167710062977, 1224967301754, -51920085859710, 135335259830867, 14992073315394822, -201575378391009366, -3667884891055854535, 128570113943360964602, 209758874692705861322
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(log(2*exp(x/2)*cosh(sqrt(5)*x/2)-1),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 28 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Log[2 Exp[x/2] Cosh[Sqrt[5] x/2] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = LucasL[n] - Sum[Binomial[n, k] LucasL[n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: log(1 + Sum_{k>=1} Lucas(k)*x^k/k!).
a(0) = 0; a(n) = Lucas(n) - (1/n)*Sum_{k=1..n-1} binomial(n,k)*Lucas(n-k)*k*a(k).

A323722 Expansion of e.g.f. log(1 + exp(x)*sinh(sqrt(2)*x)/sqrt(2)).

Original entry on oeis.org

0, 1, 1, 1, -2, -7, 6, 119, 120, -2911, -12518, 90055, 977164, -2167375, -83354634, -168068473, 7777602768, 58283146817, -727882529102, -12779261480825, 46543629605236, 2663317412960849, 7760606919565134, -548896641490323385, -5830401238269419400, 104847450848773542497
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(log(1+exp(x)*sinh(sqrt(2)*x)/sqrt(2)),x=0,26),x,n),n=0..25); # Paolo P. Lava, Jan 29 2019
  • Mathematica
    FullSimplify[nmax = 25; CoefficientList[Series[Log[1 + Exp[x] Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, nmax}], x] Range[0, nmax]!]
    a[n_] := a[n] = Fibonacci[n, 2] - Sum[Binomial[n, k] Fibonacci[n - k, 2] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: log(1 + Sum_{k>=1} Pell(k)*x^k/k!).
a(0) = 0; a(n) = Pell(n) - (1/n)*Sum_{k=1..n-1} binomial(n,k)*Pell(n-k)*k*a(k).
Showing 1-5 of 5 results.