A256180
Exponential transform of the Fibonacci numbers.
Original entry on oeis.org
1, 1, 2, 6, 21, 86, 404, 2121, 12264, 77272, 525941, 3839706, 29891370, 246906569, 2154904856, 19799299506, 190904273049, 1926229186162, 20288311652672, 222568337565537, 2537998989244956, 30029233006187756, 368050599579654557, 4665833729558724030
Offset: 0
-
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1) *F(j) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30);
-
Table[Sum[BellY[n, k, Fibonacci[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
A274805
The logarithmic transform of sigma(n).
Original entry on oeis.org
1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 1..451
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
Cf.
A112005,
A007553,
A062740,
A007447,
A062738,
A033464,
A116652,
A002031,
A003704,
A003707,
A155585,
A000142,
A226968.
-
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
-
a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
-
N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017
A112006
A logarithmic transform of the Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 2, 7, 32, 194, 1473, 13424, 142722, 1734155, 23704880, 360035434, 6015135425, 109631190368, 2164636394634, 46027826357795, 1048622566013472, 25482771281706578, 657965393430769025, 17988006311731338448
Offset: 0
A323721
Expansion of e.g.f. log(2*exp(x/2)*cosh(sqrt(5)*x/2) - 1).
Original entry on oeis.org
0, 1, 2, -3, -6, 50, -13, -1498, 6234, 59145, -748678, -1415238, 92962179, -411570250, -11993577118, 167710062977, 1224967301754, -51920085859710, 135335259830867, 14992073315394822, -201575378391009366, -3667884891055854535, 128570113943360964602, 209758874692705861322
Offset: 0
-
seq(n!*coeff(series(log(2*exp(x/2)*cosh(sqrt(5)*x/2)-1),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 28 2019
-
nmax = 23; CoefficientList[Series[Log[2 Exp[x/2] Cosh[Sqrt[5] x/2] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = LucasL[n] - Sum[Binomial[n, k] LucasL[n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]
A323722
Expansion of e.g.f. log(1 + exp(x)*sinh(sqrt(2)*x)/sqrt(2)).
Original entry on oeis.org
0, 1, 1, 1, -2, -7, 6, 119, 120, -2911, -12518, 90055, 977164, -2167375, -83354634, -168068473, 7777602768, 58283146817, -727882529102, -12779261480825, 46543629605236, 2663317412960849, 7760606919565134, -548896641490323385, -5830401238269419400, 104847450848773542497
Offset: 0
-
seq(n!*coeff(series(log(1+exp(x)*sinh(sqrt(2)*x)/sqrt(2)),x=0,26),x,n),n=0..25); # Paolo P. Lava, Jan 29 2019
-
FullSimplify[nmax = 25; CoefficientList[Series[Log[1 + Exp[x] Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, nmax}], x] Range[0, nmax]!]
a[n_] := a[n] = Fibonacci[n, 2] - Sum[Binomial[n, k] Fibonacci[n - k, 2] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 25}]
Showing 1-5 of 5 results.
Comments