cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007553 Logarithmic transform of Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 1, 7, 5, 85, 335, 1135, 15245, 13475, 717575, 4256825, 29782325, 525045275, 243258625, 56809006625, 415670267875, 5068080417875, 104229929847625, 60861649495625, 20784245979986875, 169274937975443125, 3318579283890780625, 75028912866554839375
Offset: 1

Views

Author

Keywords

Comments

The coefficients of the e.g.f. log(Sum_{n>=0} Fibonacci(n+1)*x^n/n!) produce the sequence [1,1,-1,-1,7,-5,-85,...], offset 0. - Peter Bala, Jan 19 2011
The series reversion of Sum_{n>=1} Fibonacci(n)*x^n/n is an e.g.f. whose coefficient sequence [1,-1,-1,7,-5,-85,335,1135,...] (offset 1) appears to be a signed version of this sequence. - Peter Bala, Jan 19 2011
E.g.f. A(x), A(x)=x*B(x) satisfies the differential equation B'(x) = 1 + B(x) - B(x)*B(x). - Vladimir Kruchinin, Nov 03 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    b:= proc(n) option remember; (t-> `if`(n=0, 0, t(n) -add(j*t(n-j)*
          binomial(n, j)*b(j), j=1..n-1)/n))(i->(<<0|1>, <1|1>>^i)[2, 2])
        end:
    a:= n-> abs(b(n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    FullSimplify[Abs[Rest[CoefficientList[Series[-2*x/(1+Sqrt[5]) - Log[5+Sqrt[5]] + Log[2+(3+Sqrt[5])*E^(Sqrt[5]*x)], {x, 0, 15}], x] * Range[0, 15]!]]] (* Vaclav Kotesovec, Jun 24 2014 *)
  • Maxima
    b(n):=if n=0 then 1 else b(n-1)-sum(b(i)*b(n-1-i)*binomial(n-1,i),i,1,n-2);
    a(n):=if n=0 then 0 else abs(b(n-1)); # Vladimir Kruchinin, Nov 03 2011
    
  • Maxima
    b(n):=if n=1 then 1 else sum((n+k-1)!*sum(((-1)^(j)/(k-j)!*sum(((sqrt(5)+1)^(n+j-i-1)*5^((i-j)/2)*stirling1(i,j)*2^(-n-j+i+1)*binomial(n+j-2,i-1))/i!,i,j,n+j-1)),j,1,k),k,1,n-1);
    a(n):=if n=1 then 1 else abs(b(n-1));
    makelist(ratsimp(a(n)),n,1,10); # Vladimir Kruchinin, Nov 17 2012
    
  • Sage
    @CachedFunction
    def c(n,k) :
        if n==k: return 1
        if k<1 or k>n: return 0
        return ((n-k)//2+1)*c(n-1,k-1)-2*k*c(n-1,k+1)
    @CachedFunction
    def A007553(n):
        return abs(add(c(n,k) for k in (0..n)))
    [A007553(n) for n in (0..25)] # Peter Luschny, Jun 10 2014

Formula

b(n) = b(n-1) - Sum_{i=1..n-2} b(i)*b(n-1-i)*binomial(n-1,i), b(0)=1. a(n+1) = abs(b(n)). - Vladimir Kruchinin, Nov 03 2011
Let e.g.f. E(x) = log(1 + Sum_{n>=1} Fibonacci(n+1)*x^n/n!), then g.f. A(x)=x*(1+1/Q(0)), where Q(k) = 1/(x*(k+1)) + 1 + 1/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 07 2013
Let F(x) = log(Sum_{n>=0} Fibonacci(n+1)*x^n/n!) be the e.g.f., produce the sequence [1,1,-1,-1,7,-5,-85,...], then g.f. A(x)= 1 + x/Q(0), where Q(k) = 1 + x*(2*k+1) + x^2*(2*k+1)*(2*k+2)/(1 + x*(2*k+2) + x^2*(2*k+2)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
a(n) ~ 2*(n-1)! * abs(cos(n*arctan(Pi/log(2/(3+sqrt(5)))))) * (5/(Pi^2+log(2/(3+sqrt(5)))^2))^(n/2). - Vaclav Kotesovec, Jun 24 2014