A007607 Skip 1, take 2, skip 3, etc.
2, 3, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 29, 30, 31, 32, 33, 34, 35, 36, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130
Offset: 1
Examples
From _Omar E. Pol_, Aug 29 2018: (Start) Written as an irregular triangle in which the row lengths are the nonzero even numbers the sequence begins: 2, 3; 7, 8, 9, 10; 16, 17, 18, 19, 20, 21; 29, 30, 31, 32, 33, 34, 35, 36; 46, 47, 48, 49, 50, 51, 52, 53, 54, 55; 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78; 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105; 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136; ... Row sums give the nonzero terms of A317297. Column 1 gives A130883, n >= 1. Right border gives A014105, n >= 1. (End)
References
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a007607 n = a007607_list !! (n-1) a007607_list = skipTake 1 [1..] where skipTake k xs = take (k + 1) (drop k xs) ++ skipTake (k + 2) (drop (2*k + 1) xs) -- Reinhard Zumkeller, Feb 12 2011
-
Haskell
a007607_list' = f $ tail $ scanl (+) 0 [1..] where f (t:t':t'':ts) = [t+1..t'] ++ f (t'':ts) -- Reinhard Zumkeller, Feb 12 2011
-
Mathematica
Flatten[ Table[i, {j, 2, 16, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *) With[{t=20},Flatten[Take[TakeList[Range[(t(t+1))/2],Range[t]],{2,-1,2}]]] (* Harvey P. Dale, Sep 26 2021 *)
-
PARI
for(m=0,10,for(n=2*m^2+3*m+2,2*m^2+5*m+3,print1(n", "))) \\ Charles R Greathouse IV, Feb 12 2011
Formula
G.f.: 1/(1-x) * (1/(1-x) + x*Sum_{k>=1} (2k+1)*x^(k*(k+1))). - Ralf Stephan, Mar 03 2004
A057211(a(n)) = 0. - Reinhard Zumkeller, Dec 30 2011
a(n) = floor(sqrt(n) + 1/2)^2 + n = A053187(n) + n. - Ridouane Oudra, May 04 2019
Comments