cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000290 The squares: a(n) = n^2.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0

Views

Author

Keywords

Comments

To test if a number is a square, see Cohen, p. 40. - N. J. A. Sloane, Jun 19 2011
Zero followed by partial sums of A005408 (odd numbers). - Jeremy Gardiner, Aug 13 2002
Begin with n, add the next number, subtract the previous number and so on ending with subtracting a 1: a(n) = n + (n+1) - (n-1) + (n+2) - (n-2) + (n+3) - (n-3) + ... + (2n-1) - 1 = n^2. - Amarnath Murthy, Mar 24 2004
Sum of two consecutive triangular numbers A000217. - Lekraj Beedassy, May 14 2004
Numbers with an odd number of divisors: {d(n^2) = A048691(n); for the first occurrence of 2n + 1 divisors, see A071571(n)}. - Lekraj Beedassy, Jun 30 2004
See also A000037.
First sequence ever computed by electronic computer, on EDSAC, May 06 1949 (see Renwick link). - Russ Cox, Apr 20 2006
Numbers k such that the imaginary quadratic field Q(sqrt(-k)) has four units. - Marc LeBrun, Apr 12 2006
For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A006881(k)^(n-1)); a(n) = A000005(A000400(n-1)) = A000005(A011557(n-1)) = A000005(A001023(n-1)) = A000005(A001024(n-1)). - Reinhard Zumkeller, Mar 04 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
Numbers a such that a^1/2 + b^1/2 = c^1/2 and a^2 + b = c. - Cino Hilliard, Feb 07 2008 (this comment needs clarification, Joerg Arndt, Sep 12 2013)
Numbers k such that the geometric mean of the divisors of k is an integer. - Ctibor O. Zizka, Jun 26 2008
Equals row sums of triangle A143470. Example: 36 = sum of row 6 terms: (23 + 7 + 3 + 1 + 1 + 1). - Gary W. Adamson, Aug 17 2008
Equals row sums of triangles A143595 and A056944. - Gary W. Adamson, Aug 26 2008
Number of divisors of 6^(n-1) for n > 0. - J. Lowell, Aug 30 2008
Denominators of Lyman spectrum of hydrogen atom. Numerators are A005563. A000290-A005563 = A000012. - Paul Curtz, Nov 06 2008
a(n) is the number of all partitions of the sum 2^2 + 2^2 + ... + 2^2, (n-1) times, into powers of 2. - Valentin Bakoev, Mar 03 2009
a(n) is the maximal number of squares that can be 'on' in an n X n board so that all the squares turn 'off' after applying the operation: in any 2 X 2 sub-board, a square turns from 'on' to 'off' if the other three are off. - Srikanth K S, Jun 25 2009
Zero together with the numbers k such that 2 is the number of perfect partitions of k. - Juri-Stepan Gerasimov, Sep 26 2009
Totally multiplicative sequence with a(p) = p^2 for prime p. - Jaroslav Krizek, Nov 01 2009
Satisfies A(x)/A(x^2), A(x) = A173277: (1, 4, 13, 32, 74, ...). - Gary W. Adamson, Feb 14 2010
Positive members are the integers with an odd number of odd divisors and an even number of even divisors. See also A120349, A120359, A181792, A181793, A181795. - Matthew Vandermast, Nov 14 2010
Besides the first term, this sequence is the denominator of Pi^2/6 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ... . - Mohammad K. Azarian, Nov 01 2011
Partial sums give A000330. - Omar E. Pol, Jan 12 2013
Drmota, Mauduit, and Rivat proved that the Thue-Morse sequence along the squares is normal; see A228039. - Jonathan Sondow, Sep 03 2013
a(n) can be decomposed into the sum of the four numbers [binomial(n, 1) + binomial(n, 2) + binomial(n-1, 1) + binomial(n-1, 2)] which form a "square" in Pascal's Triangle A007318, or the sum of the two numbers [binomial(n, 2) + binomial(n+1, 2)], or the difference of the two numbers [binomial(n+2, 3) - binomial(n, 3)]. - John Molokach, Sep 26 2013
In terms of triangular tiling, the number of equilateral triangles with side length 1 inside an equilateral triangle with side length n. - K. G. Stier, Oct 30 2013
Number of positive roots in the root systems of type B_n and C_n (when n > 1). - Tom Edgar, Nov 05 2013
Squares of squares (fourth powers) are also called biquadratic numbers: A000583. - M. F. Hasler, Dec 29 2013
For n > 0, a(n) is the largest integer k such that k^2 + n is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n is a multiple of k + n is given by k = n^(2*m). - Derek Orr, Sep 03 2014
For n > 0, a(n) is the number of compositions of n + 5 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
a(n), for n >= 3, is also the number of all connected subtrees of a cycle graph, having n vertices. - Viktar Karatchenia, Mar 02 2016
On every sequence of natural continuous numbers with an even number of elements, the summatory of the second half of the sequence minus the summatory of the first half of the sequence is always a square. Example: Sequence from 61 to 70 has an even number of elements (10). Then 61 + 62 + 63 + 64 + 65 = 315; 66 + 67 + 68 + 69 + 70 = 340; 340 - 315 = 25. (n/2)^2 for n = number of elements. - César Aguilera, Jun 20 2016
On every sequence of natural continuous numbers from n^2 to (n+1)^2, the sum of the differences of pairs of elements of the two halves in every combination possible is always (n+1)^2. - César Aguilera, Jun 24 2016
Suppose two circles with radius 1 are tangent to each other as well as to a line not passing through the point of tangency. Create a third circle tangent to both circles as well as the line. If this process is continued, a(n) for n > 0 is the reciprocals of the radii of the circles, beginning with the largest circle. - Melvin Peralta, Aug 18 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Numerators of the solution to the generalization of the Feynman triangle problem, with an offset of 2. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The denominators of the ratio of the areas is given by A002061. [Cook & Wood, 2004] - Joe Marasco, Feb 20 2017
Equals row sums of triangle A004737, n >= 1. - Martin Michael Musatov, Nov 07 2017
Right-hand side of the binomial coefficient identity Sum_{k = 0..n} (-1)^(n+k+1)*binomial(n,k)*binomial(n + k,k)*(n - k) = n^2. - Peter Bala, Jan 12 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)-1} such that |A|=|B|=k and A+B contains {0,1,2,...,a(n)-1}} = n. - Michael Chu, Mar 09 2022
Number of 3-permutations of n elements avoiding the patterns 132, 213, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Number of intercalates in cyclic Latin squares of order 2n (cyclic Latin squares of odd order do not have intercalates). - Eduard I. Vatutin, Feb 15 2024
a(n) is the number of ternary strings of length n with at most one 0, exactly one 1, and no restriction on the number of 2's. For example, a(3)=9, consisting of the 6 permutations of the string 102 and the 3 permutations of the string 122. - Enrique Navarrete, Mar 12 2025

Examples

			For n = 8, a(8) = 8 * 15 - (1 + 3 + 5 + 7 + 9 + 11 + 13) - 7 = 8 * 15 - 49 - 7 = 64. - _Bruno Berselli_, May 04 2010
G.f. = x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 + 49*x^7 + 64*x^8 + 81*x^9 + ...
a(4) = 16. For n = 4 vertices, the cycle graph C4 is A-B-C-D-A. The subtrees are: 4 singles: A, B, C, D; 4 pairs: A-B, BC, C-D, A-D; 4 triples: A-B-C, B-C-D, C-D-A, D-A-B; 4 quads: A-B-C-D, B-C-D-A, C-D-A-B, D-A-B-C; 4 + 4 + 4 + 4 = 16. - _Viktar Karatchenia_, Mar 02 2016
		

References

  • G. L. Alexanderson et al., The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, "December 1967 Problem B4(a)", pp. 8(157) MAA Washington DC 1985.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Chapter XV, pp. 135-167.
  • R. P. Burn & A. Chetwynd, A Cascade Of Numbers, "The prison door problem" Problem 4 pp. 5-7; 79-80 Arnold London 1996.
  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, p. 40.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 31, 36, 38, 63.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), p. 6.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments, Chapter 6 pp. 71-2, W. H. Freeman NY 1988.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology and §8.6 Figurate Numbers, pp. 264, 290-291.
  • Alfred S. Posamentier, The Art of Problem Solving, Section 2.4 "The Long Cell Block" pp. 10-1; 12; 156-7 Corwin Press Thousand Oaks CA 1996.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 35, 52-53, 129-132, 244.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. K. Strayer, Elementary Number Theory, Exercise Set 3.3 Problems 32, 33, p. 88, PWS Publishing Co. Boston MA 1996.
  • C. W. Trigg, Mathematical Quickies, "The Lucky Prisoners" Problem 141 pp. 40, 141, Dover NY 1985.
  • R. Vakil, A Mathematical Mosaic, "The Painted Lockers" pp. 127;134 Brendan Kelly Burlington Ontario 1996.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.

Crossrefs

Cf. A092205, A128200, A005408, A128201, A002522, A005563, A008865, A059100, A143051, A143470, A143595, A056944, A001157 (inverse Möbius transform), A001788 (binomial transform), A228039, A001105, A004159, A159918, A173277, A095794, A162395, A186646 (Pisano periods), A028338 (2nd diagonal).
A row or column of A132191.
This sequence is related to partitions of 2^n into powers of 2, as it is shown in A002577. So A002577 connects the squares and A000447. - Valentin Bakoev, Mar 03 2009
Boustrophedon transforms: A000697, A000745.
Cf. A342819.
Cf. A013661.

Programs

Formula

G.f.: x*(1 + x) / (1 - x)^3.
E.g.f.: exp(x)*(x + x^2).
Dirichlet g.f.: zeta(s-2).
a(n) = a(-n).
Multiplicative with a(p^e) = p^(2*e). - David W. Wilson, Aug 01 2001
Sum of all matrix elements M(i, j) = 2*i/(i+j) (i, j = 1..n). a(n) = Sum_{i = 1..n} Sum_{j = 1..n} 2*i/(i + j). - Alexander Adamchuk, Oct 24 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 2. - Miklos Kristof, Mar 09 2005
From Pierre CAMI, Oct 22 2006: (Start)
a(n) is the sum of the odd numbers from 1 to 2*n - 1.
a(0) = 0, a(1) = 1, then a(n) = a(n-1) + 2*n - 1. (End)
For n > 0: a(n) = A130064(n)*A130065(n). - Reinhard Zumkeller, May 05 2007
a(n) = Sum_{k = 1..n} A002024(n, k). - Reinhard Zumkeller, Jun 24 2007
Left edge of the triangle in A132111: a(n) = A132111(n, 0). - Reinhard Zumkeller, Aug 10 2007
Binomial transform of [1, 3, 2, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = binomial(n+1, 2) + binomial(n, 2).
This sequence could be derived from the following general formula (cf. A001286, A000330): n*(n+1)*...*(n+k)*(n + (n+1) + ... + (n+k))/((k+2)!*(k+1)/2) at k = 0. Indeed, using the formula for the sum of the arithmetic progression (n + (n+1) + ... + (n+k)) = (2*n + k)*(k + 1)/2 the general formula could be rewritten as: n*(n+1)*...*(n+k)*(2*n+k)/(k+2)! so for k = 0 above general formula degenerates to n*(2*n + 0)/(0 + 2) = n^2. - Alexander R. Povolotsky, May 18 2008
From a(4) recurrence formula a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 4, a(3) = 9. - Artur Jasinski, Oct 21 2008
The recurrence a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) is satisfied by all k-gonal sequences from a(3), with a(0) = 0, a(1) = 1, a(2) = k. - Jaume Oliver Lafont, Nov 18 2008
a(n) = floor(n*(n+1)*(Sum_{i = 1..n} 1/(n*(n+1)))). - Ctibor O. Zizka, Mar 07 2009
Product_{i >= 2} 1 - 2/a(i) = -sin(A063448)/A063448. - R. J. Mathar, Mar 12 2009
a(n) = A002378(n-1) + n. - Jaroslav Krizek, Jun 14 2009
a(n) = n*A005408(n-1) - (Sum_{i = 1..n-2} A005408(i)) - (n-1) = n*A005408(n-1) - a(n-1) - (n-1). - Bruno Berselli, May 04 2010
a(n) == 1 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = a(n-1) + a(n-2) - a(n-3) + 4, n > 2. - Gary Detlefs, Sep 07 2010
a(n+1) = Integral_{x >= 0} exp(-x)/( (Pn(x)*exp(-x)*Ei(x) - Qn(x))^2 +(Pi*exp(-x)*Pn(x))^2 ), with Pn the Laguerre polynomial of order n and Qn the secondary Laguerre polynomial defined by Qn(x) = Integral_{t >= 0} (Pn(x) - Pn(t))*exp(-t)/(x-t). - Groux Roland, Dec 08 2010
Euler transform of length-2 sequence [4, -1]. - Michael Somos, Feb 12 2011
A162395(n) = -(-1)^n * a(n). - Michael Somos, Mar 19 2011
a(n) = A004201(A000217(n)); A007606(a(n)) = A000384(n); A007607(a(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011
Sum_{n >= 1} 1/a(n)^k = (2*Pi)^k*B_k/(2*k!) = zeta(2*k) with Bernoulli numbers B_k = -1, 1/6, 1/30, 1/42, ... for k >= 0. See A019673, A195055/10 etc. [Jolley eq 319].
Sum_{n>=1} (-1)^(n+1)/a(n)^k = 2^(k-1)*Pi^k*(1-1/2^(k-1))*B_k/k! [Jolley eq 320] with B_k as above.
A007968(a(n)) = 0. - Reinhard Zumkeller, Jun 18 2011
A071974(a(n)) = n; A071975(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2011
a(n) = A199332(2*n - 1, n). - Reinhard Zumkeller, Nov 23 2011
For n >= 1, a(n) = Sum_{d|n} phi(d)*psi(d), where phi is A000010 and psi is A001615. - Enrique Pérez Herrero, Feb 29 2012
a(n) = A000217(n^2) - A000217(n^2 - 1), for n > 0. - Ivan N. Ianakiev, May 30 2012
a(n) = (A000217(n) + A000326(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = A162610(n, n) = A209297(n, n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(A000217(n)) = Sum_{i = 1..n} Sum_{j = 1..n} i*j, for n > 0. - Ivan N. Ianakiev, Apr 20 2013
a(n) = A133280(A000217(n)). - Ivan N. Ianakiev, Aug 13 2013
a(2*a(n)+2*n+1) = a(2*a(n)+2*n) + a(2*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+1) = Sum_{t1+2*t2+...+n*tn = n} (-1)^(n+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*4^(t1)*7^(t2)*8^(t3+...+tn). - Mircea Merca, Feb 27 2014
a(n) = floor(1/(1-cos(1/n)))/2 = floor(1/(1-n*sin(1/n)))/6, n > 0. - Clark Kimberling, Oct 08 2014
a(n) = ceiling(Sum_{k >= 1} log(k)/k^(1+1/n)) = -Zeta'[1+1/n]. Thus any exponent greater than 1 applied to k yields convergence. The fractional portion declines from A073002 = 0.93754... at n = 1 and converges slowly to 0.9271841545163232... for large n. - Richard R. Forberg, Dec 24 2014
a(n) = Sum_{j = 1..n} Sum_{i = 1..n} ceiling((i + j - n + 1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Product_{j = 1..n-1} 2 - 2*cos(2*j*Pi/n). - Michel Marcus, Jul 24 2015
From Ilya Gutkovskiy, Jun 21 2016: (Start)
Product_{n >= 1} (1 + 1/a(n)) = sinh(Pi)/Pi = A156648.
Sum_{n >= 0} 1/a(n!) = BesselI(0, 2) = A070910. (End)
a(n) = A028338(n, n-1), n >= 1 (second diagonal). - Wolfdieter Lang, Jul 21 2017
For n >= 1, a(n) = Sum_{d|n} sigma_2(d)*mu(n/d) = Sum_{d|n} A001157(d)*A008683(n/d). - Ridouane Oudra, Apr 15 2021
a(n) = Sum_{i = 1..2*n-1} ceiling(n - i/2). - Stefano Spezia, Apr 16 2021
From Richard L. Ollerton, May 09 2021: (Start) For n >= 1,
a(n) = Sum_{k=1..n} psi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} psi(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = (A005449(n) + A000326(n))/3. - Klaus Purath, May 13 2021
Let T(n) = A000217(n), then a(T(n)) + a(T(n+1)) = T(a(n+1)). - Charlie Marion, Jun 27 2022
a(n) = Sum_{k=1..n} sigma_1(k) + Sum_{i=1..n} (n mod i). - Vadim Kataev, Dec 07 2022
a(n^2) + a(n^2+1) + ... + a(n^2+n) + 4*A000537(n) = a(n^2+n+1) + ... + a(n^2+2n). In general, if P(k,n) = the n-th k-gonal number, then P(2k,n^2) + P(2k,n^2+1) + ... + P(2k,n^2+n) + 4*(k-1)*A000537(n) = P(2k,n^2+n+1) + ... + P(2k,n^2+2n). - Charlie Marion, Apr 26 2024
Sum_{n>=1} 1/a(n) = A013661. - Alois P. Heinz, Oct 19 2024
a(n) = 1 + 3^3*((n-1)/(n+1))^2 + 5^3*((n-1)*(n-2)/((n+1)*(n+2)))^2 + 7^3*((n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)))^2 + ... for n >= 1. - Peter Bala, Dec 09 2024

Extensions

Incorrect comment and example removed by Joerg Arndt, Mar 11 2010

A001105 a(n) = 2*n^2.

Original entry on oeis.org

0, 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288, 338, 392, 450, 512, 578, 648, 722, 800, 882, 968, 1058, 1152, 1250, 1352, 1458, 1568, 1682, 1800, 1922, 2048, 2178, 2312, 2450, 2592, 2738, 2888, 3042, 3200, 3362, 3528, 3698, 3872, 4050, 4232, 4418
Offset: 0

Views

Author

Bernd.Walter(AT)frankfurt.netsurf.de

Keywords

Comments

Number of edges of the complete bipartite graph of order 3n, K_{n,2n}. - Roberto E. Martinez II, Jan 07 2002
"If each period in the periodic system ends in a rare gas ..., the number of elements in a period can be found from the ordinal number n of the period by the formula: L = ((2n+3+(-1)^n)^2)/8..." - Nature, Jun 09 1951; Nature 411 (Jun 07 2001), p. 648. This produces the present sequence doubled up.
Let z(1) = i = sqrt(-1), z(k+1) = 1/(z(k)+2i); then a(n) = (-1)*Imag(z(n+1))/Real(z(n+1)). - Benoit Cloitre, Aug 06 2002
Maximum number of electrons in an atomic shell with total quantum number n. Partial sums of A016825. - Jeremy Gardiner, Dec 19 2004
Arithmetic mean of triangular numbers in pairs: (1+3)/2, (6+10)/2, (15+21)/2, ... . - Amarnath Murthy, Aug 05 2005
These numbers form a pattern on the Ulam spiral similar to that of the triangular numbers. - G. Roda, Oct 20 2010
Integral areas of isosceles right triangles with rational legs (legs are 2n and triangles are nondegenerate for n > 0). - Rick L. Shepherd, Sep 29 2009
Even squares divided by 2. - Omar E. Pol, Aug 18 2011
Number of stars when distributed as in the U.S.A. flag: n rows with n+1 stars and, between each pair of these, one row with n stars (i.e., n-1 of these), i.e., n*(n+1)+(n-1)*n = 2*n^2 = A001105(n). - César Eliud Lozada, Sep 17 2012
Apparently the number of Dyck paths with semilength n+3 and an odd number of peaks and the central peak having height n-3. - David Scambler, Apr 29 2013
Sum of the partition parts of 2n into exactly two parts. - Wesley Ivan Hurt, Jun 01 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective odd leg a (A180620); sequence gives values c-a, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
Number of roots in the root systems of type B_n and C_n (for n > 1). - Tom Edgar, Nov 05 2013
Area of a square with diagonal 2n. - Wesley Ivan Hurt, Jun 18 2014
This sequence appears also as the first and second member of the quartet [a(n), a(n), p(n), p(n)] of the square of [n, n, n+1, n+1] in the Clifford algebra Cl_2 for n >= 0. p(n) = A046092(n). See an Oct 15 2014 comment on A147973 where also a reference is given. - Wolfdieter Lang, Oct 16 2014
a(n) are the only integers m where (A000005(m) + A000203(m)) = (number of divisors of m + sum of divisors of m) is an odd number. - Richard R. Forberg, Jan 09 2015
a(n) represents the first term in a sum of consecutive integers running to a(n+1)-1 that equals (2n+1)^3. - Patrick J. McNab, Dec 24 2016
Also the number of 3-cycles in the (n+4)-triangular honeycomb obtuse knight graph. - Eric W. Weisstein, Jul 29 2017
Also the Wiener index of the n-cocktail party graph for n > 1. - Eric W. Weisstein, Sep 07 2017
Numbers represented as the palindrome 242 in number base B including B=2 (binary), 3 (ternary) and 4: 242(2)=18, 242(3)=32, 242(4)=50, ... 242(9)=200, 242(10)=242, ... - Ron Knott, Nov 14 2017
a(n) is the square of the hypotenuse of an isosceles right triangle whose sides are equal to n. - Thomas M. Green, Aug 20 2019
The sequence contains all odd powers of 2 (A004171) but no even power of 2 (A000302). - Torlach Rush, Oct 10 2019
From Bernard Schott, Aug 31 2021 and Sep 16 2021: (Start)
Apart from 0, integers such that the number of even divisors (A183063) is odd.
Proof: every n = 2^q * (2k+1), q, k >= 0, then 2*n^2 = 2^(2q+1) * (2k+1)^2; now, gcd(2, 2k+1) = 1, tau(2^(2q+1)) = 2q+2 and tau((2k+1)^2) = 2u+1 because (2k+1)^2 is square, so, tau(2*n^2) = (2q+2) * (2u+1).
The 2q+2 divisors of 2^(2q+1) are {1, 2, 2^2, 2^3, ..., 2^(2q+1)}, so 2^(2q+1) has 2q+1 even divisors {2^1, 2^2, 2^3, ..., 2^(2q+1)}.
Conclusion: these 2q+1 even divisors create with the 2u+1 odd divisors of (2k+1)^2 exactly (2q+1)*(2u+1) even divisors of 2*n^2, and (2q+1)*(2u+1) is odd. (End)
a(n) with n>0 are the numbers with period length 2 for Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022
Number of points at L1 distance = 2 from any given point in Z^n. - Shel Kaphan, Feb 25 2023
Integer that multiplies (h^2)/(m*L^2) to give the energy of a 1-D quantum mechanical particle in a box whenever it is an integer multiple of (h^2)/(m*L^2), where h = Planck's constant, m = mass of particle, and L = length of box. - A. Timothy Royappa, Mar 14 2025

Examples

			a(3) = 18; since 2(3) = 6 has 3 partitions with exactly two parts: (5,1), (4,2), (3,3).  Adding all the parts, we get: 1 + 2 + 3 + 3 + 4 + 5 = 18. - _Wesley Ivan Hurt_, Jun 01 2013
		

References

  • Peter Atkins, Julio De Paula, and James Keeler, "Atkins' Physical Chemistry," Oxford University Press, 2023, p. 31.
  • Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • Martin Gardner, The Colossal Book of Mathematics, Classic Puzzles, Paradoxes and Problems, Chapter 2 entitled "The Calculus of Finite Differences," W. W. Norton and Company, New York, 2001, pages 12-13.
  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 44.
  • Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000, p. 213.

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Cf. A058331 and A247375. - Bruno Berselli, Sep 16 2014
Cf. A194715 (4-cycles in the triangular honeycomb obtuse knight graph), A290391 (5-cycles), A290392 (6-cycles). - Eric W. Weisstein, Jul 29 2017
Integers such that: this sequence (the number of even divisors is odd), A028982 (the number of odd divisors is odd), A028983 (the number of odd divisors is even), A183300 (the number of even divisors is even).

Programs

Formula

a(n) = (-1)^(n+1) * A053120(2*n, 2).
G.f.: 2*x*(1+x)/(1-x)^3.
a(n) = A100345(n, n).
Sum_{n>=1} 1/a(n) = Pi^2/12 =A072691. [Jolley eq. 319]. - Gary W. Adamson, Dec 21 2006
a(n) = A049452(n) - A033991(n). - Zerinvary Lajos, Jun 12 2007
a(n) = A016742(n)/2. - Zerinvary Lajos, Jun 20 2008
a(n) = 2 * A000290(n). - Omar E. Pol, May 14 2008
a(n) = 4*n + a(n-1) - 2, n > 0. - Vincenzo Librandi
a(n) = A002378(n-1) + A002378(n). - Joerg M. Schuetze (joerg(AT)cyberheim.de), Mar 08 2010 [Corrected by Klaus Purath, Jun 18 2020]
a(n) = A176271(n,k) + A176271(n,n-k+1), 1 <= k <= n. - Reinhard Zumkeller, Apr 13 2010
a(n) = A007607(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
For n > 0, a(n) = 1/coefficient of x^2 in the Maclaurin expansion of 1/(cos(x)+n-1). - Francesco Daddi, Aug 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Artur Jasinski, Nov 24 2011
a(n) = A070216(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A014132(2*n-1,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n) = A000217(n) + A000326(n). - Omar E. Pol, Jan 11 2013
(a(n) - A000217(k))^2 = A000217(2*n-1-k)*A000217(2*n+k) + n^2, for all k. - Charlie Marion, May 04 2013
a(n) = floor(1/(1-cos(1/n))), n > 0. - Clark Kimberling, Oct 08 2014
a(n) = A251599(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+4)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = A002061(n+1) + A165900(n). - Torlach Rush, Feb 21 2019
E.g.f.: 2*exp(x)*x*(1 + x). - Stefano Spezia, Oct 12 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(2)*sinh(Pi/sqrt(2))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(2)*sin(Pi/sqrt(2))/Pi. (End)

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A057211 Alternating runs of ones and zeros, where the n-th run has length n.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Ben Tyner (tyner(AT)phys.ufl.edu), Sep 27 2000

Keywords

Comments

Seen as a triangle read by rows: T(n,k) = n mod 2, 1<=k<=n. - Reinhard Zumkeller, Mar 18 2011
a(A007607(n)) = 0; a(A007606(n)) = 1. - Reinhard Zumkeller, Dec 30 2011
Row sums give A193356. - Omar E. Pol, Mar 05 2014

References

  • K. H. Rosen, Discrete Mathematics and its Applications, 1999, Fourth Edition, page 79, exercise 10 (g).

Crossrefs

Programs

  • Haskell
    a057211 n = a057211_list !! (n-1)
    a057211_list = concat $ zipWith ($) (map replicate [1..]) a059841_list
    -- Reinhard Zumkeller, Mar 18 2011
    
  • Maple
    A002024 := n->round(sqrt(2*n)):A057211 := n->(1-(-1)^A002024(n))/2;
    # alternative Maple program:
    T:= n-> [irem(n, 2)$n][]:
    seq(T(n), n=1..14);  # Alois P. Heinz, Oct 06 2021
  • Mathematica
    Flatten[Table[{PadRight[{},n,1],PadRight[{},n+1,0]},{n,1,21,2}]] (* Harvey P. Dale, Jun 07 2015 *)
  • Python
    from math import isqrt
    def A057211(n): return int(bool(isqrt(n<<3)+1&2)) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = (1-(-1)^A002024(n))/2, where A002024(n)=round(sqrt(2*n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
Also a(n) = A000035(A002024(n)) = A002024(n) mod 2 = A002024(n)-2*floor(A002024(n)/2). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
G.f.: x/(1-x)*sum_{n>=0} (-1)^n*x^(n*(n+1)/2). - Mircea Merca, Mar 05 2014
a(n) = 1 - A057212(n). - Alois P. Heinz, Oct 06 2021

Extensions

Definition amended by Georg Fischer, Oct 06 2021

A007606 Take 1, skip 2, take 3, etc.

Original entry on oeis.org

1, 4, 5, 6, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 137, 138
Offset: 1

Views

Author

Keywords

Comments

List the natural numbers: 1, 2, 3, 4, 5, 6, 7, ... . Keep the first number (1), delete the next two numbers (2, 3), keep the next three numbers (4, 5, 6), delete the next four numbers (7, 8, 9, 10) and so on.
a(A000290(n)) = A000384(n). - Reinhard Zumkeller, Feb 12 2011
A057211(a(n)) = 1. - Reinhard Zumkeller, Dec 30 2011
Numbers k with the property that the smallest Dyck path of the symmetric representation of sigma(k) has a central valley. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
Union of nonzero terms of A000384 and A317304. - Omar E. Pol, Aug 29 2018
The values of k such that, in a listing of all congruence classes of positive integers, the k-th congruence class contains k. Here the class r mod m (with r in {1,...,m}) precedes the class r' mod m' (with r' in {1,...,m'}) iff mA360418. - James Propp, Feb 10 2023

Examples

			From _Omar E. Pol_, Aug 29 2018: (Start)
Written as an irregular triangle in which the row lengths are the odd numbers the sequence begins:
    1;
    4,   5,   6;
   11,  12,  13,  14,  15;
   22,  23,  24,  25,  26,  27,  28;
   37,  38,  39,  40,  41,  42,  43,  44,  45;
   56,  57,  58,  59,  60,  61,  62 , 63,  64,  65,  66;
   79,  80,  81,  82 , 83,  84,  85,  86,  87,  88,  89,  90,  91;
  106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120;
...
Row sums give A005917.
Column 1 gives A084849.
Column 2 gives A096376, n >= 1.
Right border gives A000384, n >= 1.
(End)
		

References

  • C. Dumitrescu & V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I, Erhus Publ., Glendale, 1994.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Properties of Numbers, 1972.

Crossrefs

Programs

  • Haskell
    a007606 n = a007606_list !! (n-1)
    a007606_list = takeSkip 1 [1..] where
       takeSkip k xs = take k xs ++ takeSkip (k + 2) (drop (2*k + 1) xs)
    -- Reinhard Zumkeller, Feb 12 2011
  • Mathematica
    Flatten[ Table[i, {j, 1, 17, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *)
    Join[{1},Flatten[With[{nn=20},Range[#[[1]],Total[#]]&/@Take[Thread[ {Accumulate[ Range[nn]]+1,Range[nn]}],{2,-1,2}]]]] (* Harvey P. Dale, Jun 23 2013 *)
    With[{nn=20},Take[TakeList[Range[(nn(nn+1))/2],Range[nn]],{1,nn,2}]]//Flatten (* Harvey P. Dale, Feb 10 2023 *)
  • PARI
    for(n=1,66,m=sqrtint(n-1);print1(n+m*(m+1),","))
    

Formula

a(n) = n + m*(m+1) where m = floor(sqrt(n-1)). - Klaus Brockhaus, Mar 26 2004
a(n+1) = a(n) + if n=k^2 then 2*k+1 else 1; a(1) = 1. - Reinhard Zumkeller, May 13 2009

A317297 a(n) = (n - 1)*(4*n^2 - 8*n + 5).

Original entry on oeis.org

0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2018

Keywords

Comments

Conjecture: For n > 1, a(n) is the maximum eigenvalue of a 2*(n-1) X 2*(n-1) square matrix M defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). - Stefano Spezia, Dec 27 2018
Connections can be made to A022144 and A010014. Namely, a formula for A022144 is (2*n+1)^2 - (2*n-1)^2. A formula for A010014 is (2*n+1)^3 - (2*n-1)^3. The general form can be represented by (2*n+1)^d - (2*n-1)^d, where d designates the number of dimensions. When d is 4, a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16, namely the general form shifted by 1 and divided by 16 is a(n). - Yigit Oktar, Aug 16 2024

Crossrefs

First bisection of A006003.
Nonzero terms give the row sums of A007607.
Conjecture: 0 together with a bisection of A246697.
Cf. A219086 (partial sums).
Cf. A010014, A022144 (see comments)

Programs

  • Mathematica
    Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = (n - 1)*(4*n^2 - 8*n + 5)
    
  • PARI
    concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018

Formula

a(n) = 4*n^3 - 12*n^2 + 13*n - 5 = A033430(n) - A135453(n) + A008595(n) - 5.
G.f.: x^2*(5 + 14*x + 5*x^2)/(1 - x)^4. - Colin Barker, Sep 01 2018
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4) for n > 4. - Stefano Spezia, Sep 01 2018
E.g.f.: exp(x)*(5*x + 12*x^2 + 4*x^3). - Stefano Spezia, Jan 15 2019
a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16. - Yigit Oktar, Aug 16 2024

A317303 Numbers k such that both Dyck paths of the symmetric representation of sigma(k) have a central peak.

Original entry on oeis.org

2, 7, 8, 9, 16, 17, 18, 19, 20, 29, 30, 31, 32, 33, 34, 35, 46, 47, 48, 49, 50, 51, 52, 53, 54, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 154, 155, 156, 157, 158, 159, 160
Offset: 1

Views

Author

Omar E. Pol, Aug 27 2018

Keywords

Comments

Also triangle read by rows which gives the odd-indexed rows of triangle A014132.
There are no triangular number (A000217) in this sequence.
For more information about the symmetric representation of sigma see A237593 and its related sequences.
Equivalently, numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have an odd number of peaks. - Omar E. Pol, Sep 13 2018

Examples

			Written as an irregular triangle in which the row lengths are the odd numbers, the sequence begins:
    2;
    7,   8,   9;
   16,  17,  18,  19,  20;
   29,  30,  31,  32,  33,  34,  35;
   46,  47,  48,  49,  50,  51,  52,  53,  54;
   67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77;
   92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103, 104;
  121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135;
...
Illustration of initial terms:
-----------------------------------------------------------
   k   sigma(k)   Diagram of the symmetry of sigma
-----------------------------------------------------------
                    _         _ _ _             _ _ _ _ _
                  _| |       | | | |           | | | | | |
   2      3      |_ _|       | | | |           | | | | | |
                             | | | |           | | | | | |
                            _|_| | |           | | | | | |
                          _|  _ _|_|           | | | | | |
                  _ _ _ _|  _| |               | | | | | |
   7      8      |_ _ _ _| |_ _|               | | | | | |
   8     15      |_ _ _ _ _|              _ _ _| | | | | |
   9     13      |_ _ _ _ _|             |  _ _ _|_| | | |
                                        _| |    _ _ _|_| |
                                      _|  _|   |  _ _ _ _|
                                  _ _|  _|  _ _| |
                                 |  _ _|  _|    _|
                                 | |     |     |
                  _ _ _ _ _ _ _ _| |  _ _|  _ _|
  16     31      |_ _ _ _ _ _ _ _ _| |  _ _|
  17     18      |_ _ _ _ _ _ _ _ _| | |
  18     39      |_ _ _ _ _ _ _ _ _ _| |
  19     20      |_ _ _ _ _ _ _ _ _ _| |
  20     42      |_ _ _ _ _ _ _ _ _ _ _|
.
For the first nine terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central peak.
Compare with A317304.
		

Crossrefs

Column 1 gives A130883, n >= 1.
Column 2 gives A033816, n >= 1.
Row sums give the odd-indexed terms of A006002.
Right border gives the positive terms of A014107, also the odd-indexed terms of A000096.
The union of A000217, A317304 and this sequence gives A001477.
Some other sequences related to the central peak or the central valley of the symmetric representation of sigma are A000217, A000384, A007606, A007607, A014105, A014132, A162917, A161983, A317304. See also A317306.

A317304 Numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have a central valley.

Original entry on oeis.org

4, 5, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1

Views

Author

Omar E. Pol, Aug 27 2018

Keywords

Comments

Also triangle read by rows which gives the even-indexed rows of triangle A014132.
There are no triangular number (A000217) in this sequence.
For more information about the symmetric representation of sigma see A237593 and its related sequences.
Equivalently, numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have an even number of peaks. - Omar E. Pol, Sep 13 2018

Examples

			Written as an irregular triangle in which the row lengths are the positive even numbers, the sequence begins:
    4,   5;
   11,  12,  13,  14;
   22,  23,  24,  25,  26,  27;
   37,  38,  39,  40,  41,  42,  43,  44;
   56,  57,  58,  59,  60,  61,  62,  63,  64,  65;
   79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90;
  106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119;
...
Illustration of initial terms:
-------------------------------------------------
   k  sigma(k)  Diagram of the symmetry of sigma
-------------------------------------------------
                       _ _           _ _ _ _
                      | | |         | | | | |
                     _| | |         | | | | |
                 _ _|  _|_|         | | | | |
   4      7     |_ _ _|             | | | | |
   5      6     |_ _ _|             | | | | |
                                 _ _|_| | | |
                               _|    _ _|_| |
                             _|     |  _ _ _|
                            |      _|_|
                 _ _ _ _ _ _|  _ _|
  11     12     |_ _ _ _ _ _| |  _|
  12     28     |_ _ _ _ _ _ _| |
  13     14     |_ _ _ _ _ _ _| |
  14     24     |_ _ _ _ _ _ _ _|
.
For the first six terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central valley.
Compare with A317303.
		

Crossrefs

Row sums give A084367. n >= 1.
Column 1 gives A084849, n >= 1.
Column 2 gives A096376, n >= 1.
Right border gives the nonzero terms of A014106.
The union of A000217, A317303 and this sequence gives A001477.
Some other sequences related to the central peak or the central valley of the symmetric representation of sigma are A000217, A000384, A007606, A007607, A014105, A014132, A162917, A161983, A317303. See also A317306.

A360418 Numbers k such that, in a listing of all congruence classes of positive integers, the k-th congruence class contains k. Here the class r mod m (with r in {1,...,m}) precedes the class a' mod b' (with r' in {1,...,m'}) iff m < m' or r > r'.

Original entry on oeis.org

1, 2, 3, 5, 13, 17, 20, 25, 41, 48, 53, 61, 85, 95, 102, 113, 145, 158, 167, 181, 221, 237, 248, 265, 313, 332, 345, 365, 421, 443, 458, 481, 545, 570, 587, 613, 685, 713, 732, 761, 841, 872, 893, 925, 1013, 1047, 1070, 1105, 1201, 1238, 1263, 1301, 1405, 1445, 1472, 1513, 1625, 1668, 1697, 1741, 1861
Offset: 1

Views

Author

James Propp, Feb 06 2023

Keywords

Comments

The sequence appears to be the interleaving of the four sequences A080856, A102083, A360416, A360417. This has been verified for values of k up to one million as of February 06 2023.
Above conjecture confirmed with more terms and linear recurrence. See supporting formula below. - Ray Chandler, Feb 10 2025

Examples

			The 1st congruence class in the list (with m=1 and r=1) is {1,2,3,...} which contains 1, so 1 is in the sequence. The 2nd congruence class (with m=2 and r=2) is {2,4,6,...} which contains 2, so 2 is in the sequence. The 3rd congruence class (with m=2 and r=1) is {1,3,5,...} which contains 3, so 3 is in the sequence. The 4th congruence class (with m=3 and r=3) is {3,6,9,...} which does not contain 4, so 4 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    mval[n_] := Floor[Sqrt[2 n] + 1/2]; (* A002024 *)
    rval[n_] := (2 - 2 n + Round[Sqrt[2 n]] + Round[Sqrt[2 n]]^2)/2; (* A004736 *)
    test[n_] := Mod[n - rval[n], mval[n]] == 0;
    Select[Range[10000], test[#] &]

Formula

From Ray Chandler, Feb 10 2025: (Start)
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 8.
A080856(n) = A360417(n-1) + 2*A080856(n-1) - 2*A360417(n-2) - A080856(n-2) + A360417(n-3).
A102083(n) = A080856(n) + 2*A102083(n-1) - 2*A080856(n-1) - A102083(n-2) + A080856(n-2).
A360416(n) = A102083(n) + 2*A360416(n-1) - 2*A102083(n-1) - A360416(n-2) + A102083(n-2).
A360417(n) = A360416(n) + 2*A360417(n-1) - 2*A360416(n-1) - A360417(n-2) + A360416(n-2). (End)
Showing 1-9 of 9 results.