A007615 Primes with unique period length (the periods are given in A007498).
3, 11, 37, 101, 333667, 9091, 9901, 909091, 1111111111111111111, 11111111111111111111111, 99990001, 999999000001, 909090909090909091, 900900900900990990990991, 9999999900000001, 909090909090909090909090909091, 900900900900900900900900900900990990990990990990990990990991
Offset: 1
Examples
3 is the only prime p such that decimal expansion of 1/p has (nontrivial) period exactly 1.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Samuel Yates, Period Lengths of Exactly One or Two Prime Numbers, J. Rec. Math., 18 (1985), 22-24.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..98 (terms 1..25 from T. D. Noe; terms 26..31 from Ray Chandler)
- C. K. Caldwell, The Prime Glossary, unique prime
- Makoto Kamada, Factorizations of Phi_n(10)
- Index entries for sequences related to decimal expansion of 1/n
Crossrefs
Programs
-
Mathematica
nmax = 50; periods = Reap[ Do[ p = Cyclotomic[n, 10] / GCD[n, Cyclotomic[n, 10]]; If[ PrimeQ[p], Sow[n]], {n, 1, nmax}]][[2, 1]]; Cyclotomic[#, 10] / GCD[#, Cyclotomic[#, 10]]& /@ periods // Prepend[#, 3]& (* Jean-François Alcover, Mar 28 2013 *)
Comments