cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005153 Practical numbers: positive integers m such that every k <= sigma(m) is a sum of distinct divisors of m. Also called panarithmic numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252
Offset: 1

Views

Author

Keywords

Comments

Equivalently, positive integers m such that every number k <= m is a sum of distinct divisors of m.
2^r is a member for all r as every number < = sigma(2^r) = 2^(r+1)-1 is a sum of a distinct subset of divisors {1, 2, 2^2, ..., 2^m}. - Amarnath Murthy, Apr 23 2004
Also, numbers m such that A030057(m) > m. This is a consequence of the following theorem (due to Stewart), found at the McLeman link: An integer m >= 2 with factorization Product_{i=1..k} p_i^e_i with the p_i in ascending order is practical if and only if p_1 = 2 and, for 1 < i <= k, p_i <= sigma(Product_{j < i} p_j^e_j) + 1. - Franklin T. Adams-Watters, Nov 09 2006
Practical numbers first appear in Srinivasan's short paper, which contains terms up to 200. Let m be a practical number. He states that (1) if m>2, m is a multiple of 4 or 6; (2) sigma(m) >= 2*m-1 (A103288); and (3) 2^t*m is practical. He also states that highly composite numbers (A002182), perfect numbers (A000396), and primorial numbers (A002110) are practical. - T. D. Noe, Apr 02 2010
Conjecture: The sequence a(n)^(1/n) (n=3,4,...) is strictly decreasing to the limit 1. - Zhi-Wei Sun, Jan 12 2013
Conjecture: For any positive rational number r, there are finitely many pairwise distinct practical numbers q(1)..q(k) such that r = Sum_{j=1..k} 1/q(j). For example, 2 = 1/1 + 1/2 + 1/4 + 1/6 + 1/12 with 1, 2, 4, 6 and 12 all practical, and 10/11 = 1/2 + 1/4 + 1/8 + 1/48 + 1/132 + 1/176 with 2, 4, 8, 48, 132 and 176 all practical. - Zhi-Wei Sun, Sep 12 2015
Analogous with the {1 union primes} (A008578), practical numbers form a complete sequence. This is because it contains all powers of 2 as a subsequence. - Frank M Jackson, Jun 21 2016
Sun's 2015 conjecture on the existence of Egyptian fractions with practical denominators for any positive rational number is true. See the link "Egyptian fractions with practical denominators". - David Eppstein, Nov 20 2016
Conjecture: if all divisors of m are 1 = d_1 < d_2 < ... < d_k = m, then m is practical if and only if d_(i+1)/d_i <= 2 for 1 <= i <= k-1. - Jianing Song, Jul 18 2018
The above conjecture is incorrect. The smallest counterexample is 78 (for which one of these quotients is 13/6; see A174973). m is practical if and only if the divisors of m form a complete subsequence. See Wikipedia links. - Frank M Jackson, Jul 25 2018
Reply to the comment above: Yes, and now I can show the opposite: The largest value of d_(i+1)/d_i is not bounded for practical numbers. Note that sigma(n)/n is not bounded for primorials, and primorials are practical numbers. For any constant c >= 2, let k be a practical number such that sigma(k)/k > 2c. By Bertrand's postulate there exists some prime p such that c*k < p < 2c*k < sigma(k), so k*p is a practical number with consecutive divisors k and p where p/k > c. For example, for k = 78 we have 13/6 > 2, and for 97380 we have 541/180 > 3. - Jianing Song, Jan 05 2019
Erdős (1950) and Erdős and Loxton (1979) proved that the asymptotic density of practical numbers is 0. - Amiram Eldar, Feb 13 2021
Let P(x) denote the number of practical numbers up to x. P(x) has order of magnitude x/log(x) (see Saias 1997). Moreover, we have P(x) = c*x/log(x) + O(x/(log(x))^2), where c = 1.33607... (see Weingartner 2015, 2020 and Remark 1 of Pomerance & Weingartner 2021). As a result, a(n) = k*n*log(n*log(n)) + O(n), where k = 1/c = 0.74846... - Andreas Weingartner, Jun 26 2021
From Hal M. Switkay, Dec 22 2022: (Start)
Every number of least prime signature (A025487) is practical, thereby including two classes of number mentioned in Noe's comment. This follows from Stewart's characterization of practical numbers, mentioned in Adams-Watters's comment, combined with Bertrand's postulate (there is a prime between every natural number and its double, inclusive).
Also, the first condition in Stewart's characterization (p_1 = 2) is equivalent to the second condition with index i = 1, given that an empty product is equal to 1. (End)
Conjecture: every odd number, beginning with 3, is the sum of a prime number and a practical number. Note that this conjecture occupies the space between the unproven Goldbach conjecture and the theorem that every even number, beginning with 2, is the sum of two practical numbers (Melfi's 1996 proof of Margenstern's conjecture). - Hal M. Switkay, Jan 28 2023

References

  • H. Heller, Mathematical Buds, Vol. 1, Chap. 2, pp. 10-22, Mu Alpha Theta OK, 1978.
  • Malcolm R. Heyworth, More on Panarithmic Numbers, New Zealand Math. Mag., Vol. 17 (1980), pp. 28-34 [ ISSN 0549-0510 ].
  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. K. Srinivasan, Practical numbers, Current Science, 17 (1948), 179-180.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 146-147.

Crossrefs

Subsequence of A103288.
Cf. A002093, A007620 (second definition), A030057, A033630, A119348, A174533, A174973.
Cf. A027750.

Programs

  • Haskell
    a005153 n = a005153_list !! (n-1)
    a005153_list = filter (\x -> all (p $ a027750_row x) [1..x]) [1..]
       where p _  0 = True
             p [] _ = False
             p ds'@(d:ds) m = d <= m && (p ds (m - d) || p ds m)
    -- Reinhard Zumkeller, Feb 23 2014, Oct 27 2011
    
  • Maple
    isA005153 := proc(n)
        local ifs,pprod,p,i ;
        if n = 1 then
            return true;
        elif type(n,'odd') then
            return false ;
        end if;
        # not using ifactors here directly because no guarantee primes are sorted...
        ifs := ifactors(n)[2] ;
        pprod := 1;
        for p in sort(numtheory[factorset](n) ) do
            for i in ifs do
                if op(1,i) = p then
                    if p > 2 and p > 1+numtheory[sigma](pprod) then
                        return false ;
                    end if;
                    pprod := pprod*p^op(2,i) ;
                end if;
            end do:
        end do:
        return true ;
    end proc:
    for n from 1 to 300 do
        if isA005153(n)  then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 07 2023
  • Mathematica
    PracticalQ[n_] := Module[{f,p,e,prod=1,ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p,e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1,prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i,Length[p]}]; ok]]]; Select[Range[200], PracticalQ] (* T. D. Noe, Apr 02 2010 *)
  • PARI
    is_A005153(n)=bittest(n,0) && return(n==1); my(P=1); n && !for(i=2,#n=factor(n)~,n[1,i]>1+(P*=sigma(n[1,i-1]^n[2,i-1])) && return) \\ M. F. Hasler, Jan 13 2013
    
  • Python
    from sympy import factorint
    def is_A005153(n):
        if n & 1: return n == 1
        f = factorint(n) ; P = (2 << f.pop(2)) - 1
        for p in f: # factorint must have prime factors in increasing order
            if p > 1 + P: return
            P *= p**(f[p]+1)//(p-1)
        return True # M. F. Hasler, Jan 02 2023
    
  • Python
    from sympy import divisors;from more_itertools import powerset
    [i for i in range(1,253) if (lambda x:len(set(map(sum,powerset(x))))>sum(x))(divisors(i))] # Nicholas Stefan Georgescu, May 20 2023

Formula

Weingartner proves that a(n) ~ k*n log n, strengthening an earlier result of Saias. In particular, a(n) = k*n log n + O(n log log n). - Charles R Greathouse IV, May 10 2013
More precisely, a(n) = k*n*log(n*log(n)) + O(n), where k = 0.74846... (see comments). - Andreas Weingartner, Jun 26 2021

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004
Erroneous comment removed by T. D. Noe, Nov 14 2010
Definition changed to exclude n = 0 explicitly by M. F. Hasler, Jan 19 2013

A007620 Numbers m such that every k <= m is a sum of proper divisors of m (for m>1).

Original entry on oeis.org

1, 6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 260, 264, 270, 272, 276, 280, 288, 294, 300, 304, 306
Offset: 1

Views

Author

Keywords

Comments

This sequence was formerly called "practical numbers (second definition)" because it was thought this was the definition used in Srinivasan's original paper. However, in Srinivasan's paper, one can read that his definition is "k < m". Stewart proves that Srinivasan's definition is equivalent to requiring every k <= sigma(m) be the sum of distinct divisors of m. This sequence is a subsequence of the practical numbers, A005153. - T. D. Noe, Apr 02 2010
A005153 without terms larger than 1 that are almost-perfect numbers (numbers k such that sigma(k) = 2*k-1, the only known such numbers are the powers of 2, A000079). - Amiram Eldar, Apr 07 2023

References

  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005153 (first definition).

Programs

  • Haskell
    a007620 n = a007620_list !! (n-1)
    a007620_list = 1 : filter (\x -> all (p $ a027751_row x) [1..x]) [2..]
       where p _  0 = True
             p [] _ = False
             p ds'@(d:ds) m = d <= m && (p ds (m - d) || p ds m)
    -- Reinhard Zumkeller, Feb 23 2014
    
  • Mathematica
    DeleteCases[ A005835, q_/; (Count[ CoefficientList[ Series[ Times@@( (1+z^#)& /@ Divisors[ q ] ), {z, 0, q} ], z ], 0 ]>0) ] (* Wouter Meeussen *)
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A007620_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            if m == 1:
                yield 1
            else:
                c = {0}
                for d in divisors(m,generator=True):
                    if d < m:
                        c |= {a+d for a in c}
                if all(a in c for a in range(m+1)):
                    yield m
    A007620_list = list(islice(A007620_gen(),30)) # Chai Wah Wu, Jul 06 2023

A353061 Zumkeller numbers (A083207) that are not practical numbers (A005153).

Original entry on oeis.org

70, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 350, 354, 366, 372, 402, 426, 438, 444, 474, 490, 492, 498, 516, 534, 550, 564, 572, 582, 606, 618, 636, 642, 650, 654, 678, 708, 732, 762, 770, 786, 804, 822, 834, 836, 852, 876, 894, 906, 910, 940, 942, 945, 948, 978, 996
Offset: 1

Views

Author

Jianing Song, Apr 20 2022

Keywords

Comments

Different from A007621: A007621 contains no odd numbers, while every odd term in A083207 is here. The numbers 738, 748, 774, 846, ... are in A007621 and are not here.
But the subsequence of even terms (A005843 intersect this sequence) is a subsequence of A007621:
- A005843 intersect this sequence = (A005843 intersect A083207) \ A005153;
- A083207 is a subsequence of A023196, and every perfect number is practical;
- So, (A005843 intersect A083207) \ A005153 is a subsequence of A173490, and A005153 is a supersequence of A007620.

Examples

			70 is a term since 70 is a Zumkeller number but not a practical number: 1+5+7+10+14+35 = 2+70, so 70 is a Zumkeller number; but 4 cannot be written as a sum of distinct divisors of 70, so 70 is not practical.
		

Crossrefs

Programs

A035480 Pseudoperfect numbers (A005835) that are not practical (second definition, A007620).

Original entry on oeis.org

102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 350, 354, 366, 372, 402, 426, 438, 444, 474, 490, 492, 498, 516, 534, 550, 564, 572, 582, 606, 618, 636, 642, 650, 654, 678, 708, 732, 738, 748, 762, 770, 774, 786, 804, 822, 834, 846, 852, 876, 894, 906, 910, 940, 942, 945, 948, 954, 978, 996, 1002
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers in A005835 but not in A007620.
Cf. A007621.

Programs

  • Mathematica
    Cases[ A005835, q_/;(Count[ CoefficientList[ Series[ Times@@( (1+z^#)& /@ Divisors[ q ] ), {z, 0, q} ], z ], 0 ]>0) ]

Extensions

Corrected by David W. Wilson.
Showing 1-4 of 4 results.