A007705 Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.
1, 0, 10, 28, 0, 88, 4524, 0, 140692, 820496, 0, 128850048, 1957725000, 0, 605917055356, 13404947681712, 0
Offset: 0
Examples
From _Eduard I. Vatutin_, Jan 22 2024: (Start) N=5=2*2+1 (all 10 solutions are shown below): +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ | Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . | | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . | | . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . | | . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . | | . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q | +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q | | . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . | | . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . | | . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . | | Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . | +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ N=7=2*3+1: +---------------+ | Q . . . . . . | | . . . Q . . . | | . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . | | . . . . Q . . | +---------------+ N=11=5*2+1: +-----------------------+ | Q . . . . . . . . . . | | . . Q . . . . . . . . | | . . . . Q . . . . . . | | . . . . . . Q . . . . | | . . . . . . . . Q . . | | . . . . . . . . . . Q | | . Q . . . . . . . . . | | . . . Q . . . . . . . | | . . . . . Q . . . . . | | . . . . . . . Q . . . | | . . . . . . . . . Q . | +-----------------------+ N=13=6*2+1 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way): +---------------------------+ +---------------------------+ | Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . | | . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . | | . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . | | . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . | | . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . | | . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . | | . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q | | . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . | | . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . | | . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . | | . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . | | . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . | | . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . | +---------------------------+ +---------------------------+ (End)
References
- W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.
- R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.
Links
- M. R. Engelhardt, A group-based search for solutions of the n-queens problem, Discr. Math., 307 (2007), 2535-2551.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 62-63.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
- Eric Weisstein's World of Mathematics, Queens Problem.
- Eduard I. Vatutin, Numerical formula between number of horizontally or vertically semicyclic diagonal Latin squares and number of toroidal n-queens problem solutions (in Russian).
Formula
a(n) = A071607(n) * (2*n+1). - Eduard I. Vatutin, Jan 22 2024, corrected Mar 14 2024
a(n) = A342990(n) / (2n)!. - Eduard I. Vatutin, Apr 09 2024
Extensions
Two more terms from Matthias Engelhardt, Dec 17 1999 and Jan 11 2001
13404947681712 from Matthias Engelhardt, May 01 2005
Comments