A007709
Number of winning (or reformed) decks at Mousetrap.
Original entry on oeis.org
1, 1, 2, 6, 15, 84, 330, 1812, 9978, 65503, 449719, 3674670, 28886593, 266242729, 2527701273, 25749021720
Offset: 1
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations," Preprint Me.Mo.Mat. n. 15/2005.
- R. K. Guy, Unsolved Problems Number Theory, E37.
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Bersani, On the game Mousetrap.
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy]
- R. K. Guy and R. J. Nowakowski, Mousetrap Amer. Math. Monthly, 101 (1994), 1007-1010.
Better description and more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 09 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A007712
Number of once reformable permutations of {1,2,...,n}.
Original entry on oeis.org
1, 2, 4, 14, 72, 316, 1730, 9728, 64330, 444890, 3645441, 28758111, 265434293, 2522822881, 25717118338
Offset: 2
For n=3, 123, 312, 231, 213 are unreformed but 132->123, 321->213 so a(3)=2.
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations", preprint MeMoMat, No. 15, 2005.
- R. K. Guy, Unsolved Problems Number Theory, Section E37.
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Bersani, On the game Mousetrap.
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy].
- R. K. Guy and R. J. Nowakowski, Mousetrap Amer. Math. Monthly, 101 (1994), 1007-1010.
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Mar 06 2002
2 more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 07 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A055459
a(n) = number of permutations of {1,...,n} which are twice but not 3-times reformable.
Original entry on oeis.org
2, 1, 11, 14, 81, 242, 1142, 4771, 29009, 127876, 805947, 4868681, 31862753
Offset: 1
a(4)=2 since 4213->2134->3214, 1432->1423->1234 are the only two permutations that can be reformed twice.
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations", preprint MeMoMat n. 15/2005.
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
Edited by Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Mar 06 2002
2 more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 07 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A067950
a(n) = number of 3-times (but not 4-times) reformable permutation of {1,...,n}.
Original entry on oeis.org
1, 0, 1, 8, 31, 56, 219, 605, 2485, 9697, 40571
Offset: 6
Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Mar 06 2002
a(6)=1, 165342->132564->125346->136524.
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations", preprint MeMoMat n. 15/2005.
- R. K. Guy and R. J. Nowakowski, ``Mousetrap,'' in D. Miklos, V.T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
2 more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 07 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A127966
a(n) = number of 4-times (but not 5-times) reformable permutation of {1,...,n}.
Original entry on oeis.org
2, 1, 1, 4, 14, 57
Offset: 11
Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 09 2007
- A. M. Bersani, ``Reformed permutations in Mousetrap and its generalizations,'' Preprint Me.Mo.Mat. n. 15/2005.
- R. K. Guy and R. J. Nowakowski, ``Mousetrap,'' in D. Miklos, V.T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
Showing 1-5 of 5 results.
Comments