A007709
Number of winning (or reformed) decks at Mousetrap.
Original entry on oeis.org
1, 1, 2, 6, 15, 84, 330, 1812, 9978, 65503, 449719, 3674670, 28886593, 266242729, 2527701273, 25749021720
Offset: 1
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations," Preprint Me.Mo.Mat. n. 15/2005.
- R. K. Guy, Unsolved Problems Number Theory, E37.
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Bersani, On the game Mousetrap.
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy]
- R. K. Guy and R. J. Nowakowski, Mousetrap Amer. Math. Monthly, 101 (1994), 1007-1010.
Better description and more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 09 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A007711
Number of unreformed permutations of {1,...,n}.
Original entry on oeis.org
0, 1, 4, 18, 105, 636, 4710, 38508, 352902, 3563297, 39467081, 475326930, 6198134207, 86912048471, 1305146666727, 20897040866280
Offset: 1
For n=3, the 4 unreformed permutations are 123, 231, 312, 213, so a(3)=4. Also 132->123, 321->213 are reformable.
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations", preprint MeMoMat n. 15/2005.
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Bersani, On the game Mousetrap.
- A. M. Bersani, Reformed Permutations in mousetrap and its generalizations, INTEGERS, 10 (2010), #G01.
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy]
- R. K. Guy and R. J. Nowakowski, Mousetrap, Amer. Math. Monthly, 101 (1994), 1007-1010.
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Mar 06 2002
2 more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 07 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A007712
Number of once reformable permutations of {1,2,...,n}.
Original entry on oeis.org
1, 2, 4, 14, 72, 316, 1730, 9728, 64330, 444890, 3645441, 28758111, 265434293, 2522822881, 25717118338
Offset: 2
For n=3, 123, 312, 231, 213 are unreformed but 132->123, 321->213 so a(3)=2.
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations", preprint MeMoMat, No. 15, 2005.
- R. K. Guy, Unsolved Problems Number Theory, Section E37.
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Bersani, On the game Mousetrap.
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy].
- R. K. Guy and R. J. Nowakowski, Mousetrap Amer. Math. Monthly, 101 (1994), 1007-1010.
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Mar 06 2002
2 more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 07 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A067950
a(n) = number of 3-times (but not 4-times) reformable permutation of {1,...,n}.
Original entry on oeis.org
1, 0, 1, 8, 31, 56, 219, 605, 2485, 9697, 40571
Offset: 6
Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Mar 06 2002
a(6)=1, 165342->132564->125346->136524.
- A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations", preprint MeMoMat n. 15/2005.
- R. K. Guy and R. J. Nowakowski, ``Mousetrap,'' in D. Miklos, V.T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
2 more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 07 2007
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
A127966
a(n) = number of 4-times (but not 5-times) reformable permutation of {1,...,n}.
Original entry on oeis.org
2, 1, 1, 4, 14, 57
Offset: 11
Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 09 2007
- A. M. Bersani, ``Reformed permutations in Mousetrap and its generalizations,'' Preprint Me.Mo.Mat. n. 15/2005.
- R. K. Guy and R. J. Nowakowski, ``Mousetrap,'' in D. Miklos, V.T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008
Showing 1-5 of 5 results.
Comments