A007719 Number of independent polynomial invariants of symmetric matrix of order n.
1, 2, 4, 11, 30, 95, 328, 1211, 4779, 19902, 86682, 393072, 1847264, 8965027, 44814034, 230232789, 1213534723, 6552995689, 36207886517, 204499421849, 1179555353219, 6942908667578, 41673453738272, 254918441681030, 1588256152307002, 10073760672179505
Offset: 0
Examples
From _Gus Wiseman_, Jul 18 2018: (Start) Non-isomorphic representatives of the a(3) = 11 connected multiset partitions of {1, 1, 2, 2, 3, 3}: (112233), (1)(12233), (12)(1233), (112)(233), (123)(123), (1)(2)(1233), (1)(12)(233), (1)(23)(123), (12)(13)(23), (1)(2)(3)(123), (1)(2)(13)(23). (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) Table 63.
Crossrefs
Programs
-
Mathematica
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]]; permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m]; Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}]; RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[ Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!]; A007717 = Table[Print[n]; RowSumMats[n, 2 n, 2], {n, 0, 20}]; Join[{1}, EULERi[Rest[A007717]]] (* Jean-François Alcover, Oct 29 2018, using Andrew Howroyd's code for A007717 *)
Formula
Inverse Euler transform of A007717.
Extensions
a(0)=1 added by Alberto Tacchella, Jun 20 2011
a(7)-a(25) from Franklin T. Adams-Watters, Jun 21 2011
Comments