A007724 Even minus odd extensions of truncated 3 X 2n grid diagram.
2, 12, 110, 1274, 17136, 255816, 4124406, 70549050, 1264752060, 23555382240, 452806924752, 8939481277552, 180551099694400, 3719061442253520, 77933728043586630, 1658001861319441050, 35749633305661575300, 780123576993991461000, 17208112644166765652100
Offset: 2
Links
- J. B. Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012.
- F. Ruskey, Generating linear extensions of posets by transpositions, J. Combin. Theory, B 54 (1992), 77-101.
- Dennis White, Sign-balanced posets
Crossrefs
Cf. A003121.
2143-avoiding up-down permutations of length 2n are given by A005789. - Joel B. Lewis, Oct 05 2009
After corrections, is very similar to A217800.
Programs
-
Maple
A007724 := proc(n) combinat[multinomial](3*n,n-1,n,n+1)/n/(2*n-1)/(2*n+1) ; end proc: seq(A007724(n),n=2..40) ; # R. J. Mathar, Jul 07 2023
-
Mathematica
Table[(3*n)!/((n-1)!*n!*(n+1)!)/(n*(2*n-1)*(2*n+1)),{n,2,10}] (* Vaclav Kotesovec, Nov 13 2014 *) Table[(-1)^n HypergeometricPFQ[{-2 - 2 n, -2 n, -2 n - 1}, {2, 3}, 1], {n, 19}] (* Michael De Vlieger, Aug 22 2016 *)
-
PARI
{a(n) = if(n<2, 0, (3*n)!/((2*n+1) * (2*n-1) * (n+1)! * n!^2))}; /* Michael Somos, Jul 04 2020 */
Formula
a(n) = multinomial(3n; n-1, n, n+1)/(n(2n-1)(2n+1)).
a(n) ~ 3^(3*n+1/2) / (8*Pi*n^4). - Vaclav Kotesovec, Nov 13 2014
D-finite with recurrence n*(n+1)*(2*n+1)*a(n) -3*(3*n-1)*(2*n-3)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Jul 07 2023
Extensions
More terms from James Sellers, Dec 24 1999
a(16)-a(18) corrected and a(19)-a(20) added by Alois P. Heinz, Aug 22 2016
Comments