cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007730 7th binary partition function.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 5, 9, 8, 12, 10, 16, 14, 19, 15, 24, 20, 28, 22, 34, 29, 39, 30, 46, 38, 52, 40, 59, 49, 64, 48, 72, 58, 78, 59, 87, 72, 94, 70, 104, 84, 113, 85, 124, 102, 132, 98, 144, 115, 153, 114, 166, 136, 176, 130, 189, 151, 200, 148, 212, 172, 220
Offset: 0

Views

Author

Keywords

Crossrefs

A column of A072170.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<0, 0, add(`if`(n-j*2^i<0, 0,
             b(n-j*2^i, i-1)), j=0..6)))
        end:
    a:= n-> b(n, ilog2(n)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jun 21 2012
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 0, 0,
         Sum[If[n-j*2^i < 0, 0, b[n-j*2^i, i-1, k]], {j, 0, k-1}]]];
    a[n_] := b[n, Length[IntegerDigits[n, 2]] - 1, 7];
    Table[a[n], {n, 0, 70} ] (* Jean-François Alcover, Jan 17 2014, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=0} (1 - x^(7*2^k))/(1 - x^(2^k)). - Ilya Gutkovskiy, Jul 09 2019

Extensions

More terms from Vladeta Jovovic, May 07 2004