cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054717 Number of powers of 9 modulo n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 5, 2, 3, 3, 3, 2, 8, 2, 9, 2, 4, 5, 11, 2, 10, 3, 3, 3, 14, 3, 15, 4, 6, 8, 6, 2, 9, 9, 4, 2, 4, 4, 21, 5, 3, 11, 23, 3, 21, 10, 9, 3, 26, 3, 10, 3, 10, 14, 29, 3, 5, 15, 4, 8, 6, 6, 11, 8, 12, 6, 35, 2, 6, 9, 11, 9, 15, 4, 39, 2, 3, 4, 41, 4, 8, 21, 15, 5, 44, 3, 3
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Examples

			Take the sequence 1, 9, 81, 729, ... and reduce mod n; count distinct terms. For n = 5 we get 1, 4, 1, 4, ... so a(5) = 2.
		

Crossrefs

Cf. A007740.
Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    With[{p9=9^Range[0,50]},Table[Length[Union[Mod[#,n]&/@p9]],{n,100}]] (* Harvey P. Dale, Apr 22 2012 *)
    a[n_] := IntegerExponent[3*n, 9] + MultiplicativeOrder[9, n/3^IntegerExponent[n, 3]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = valuation(3*n, 9) + A007740(n). - Amiram Eldar, Aug 25 2024

A007737 Period of repeating digits of 1/n in base 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 10, 1, 12, 2, 1, 1, 16, 1, 9, 1, 2, 10, 11, 1, 5, 12, 1, 2, 14, 1, 6, 1, 10, 16, 2, 1, 4, 9, 12, 1, 40, 2, 3, 10, 1, 11, 23, 1, 14, 5, 16, 12, 26, 1, 10, 2, 9, 14, 58, 1, 60, 6, 2, 1, 12, 10, 33, 16, 11, 2, 35, 1, 36, 4, 5, 9, 10, 12, 78, 1, 1, 40, 82, 2, 16, 3, 14, 10
Offset: 1

Views

Author

N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)

Keywords

Comments

Not multiplicative. Smallest counterexample: a(77)=10, but a(7) = 2 and a(11) = 10. - Mitch Harris, May 16 2005.

Crossrefs

Cf. A007733 (base 2), A007734 (3), A007735 (4), A007736 (5), A007738 (7), A007739 (8), A007740 (9), A007732 (10).

Programs

  • Mathematica
    DigitCycleLength[r_Rational, b_Integer?Positive] := MultiplicativeOrder[b, FixedPoint[ Quotient[#, GCD[#, b]] &, Denominator[r]]]; DigitCycleLength[1, b_Integer?Positive] = 1; Array[ DigitCycleLength[1/#, 6] &, 80] (* Robert G. Wilson v, Jun 10 2011 *)
    a[n_] := MultiplicativeOrder[6, n/Times @@ ({2, 3}^IntegerExponent[n, {2, 3}])]; Array[a, 100] (* Amiram Eldar, Aug 26 2024 *)
  • PARI
    a(n)=znorder(Mod(6, n/2^valuation(n, 2)/3^valuation(n, 3))); \\ Joerg Arndt, Dec 14 2014

Extensions

More terms from David W. Wilson

A066799 Square array read by antidiagonals of eventual period of powers of k mod n; period of repeating digits of 1/n in base k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 2, 1, 4, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 6, 1, 1, 1, 1, 1, 4, 1, 6, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 2, 2, 3, 4, 10, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 2, 5, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 12
Offset: 1

Views

Author

Henry Bottomley, Dec 20 2001

Keywords

Comments

The determinant of the n X n matrix made from the northwest corner of this array is 0^(n-1). - Iain Fox, Mar 12 2018

Examples

			Rows start: 1,1,1,1,1,...; 1,1,1,1,1,...; 1,2,1,1,2,...; 1,1,2,1,1; 1,4,4,2,1,... T(3,2)=2 since the powers of 2 become 1,2,1,2,1,2,... mod 3 with period 2. T(4,2)=1 since the powers of 2 become 1,2,0,0,0,0,... mod 4 with eventual period 1.
Beginning of array:
+-----+--------------------------------------------------------------------
| n\k |  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  ...
+-----+--------------------------------------------------------------------
|  1  |  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
|  2  |  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
|  3  |  1,  2,  1,  1,  2,  1,  1,  2,  1,  1,  2,  1,  1,  2,  1,  1, ...
|  4  |  1,  1,  2,  1,  1,  1,  2,  1,  1,  1,  2,  1,  1,  1,  2,  1, ...
|  5  |  1,  4,  4,  2,  1,  1,  4,  4,  2,  1,  1,  4,  4,  2,  1,  1, ...
|  6  |  1,  2,  1,  1,  2,  1,  1,  2,  1,  1,  2,  1,  1,  2,  1,  1, ...
|  7  |  1,  3,  6,  3,  6,  2,  1,  1,  3,  6,  3,  6,  2,  1,  1,  3, ...
|  8  |  1,  1,  2,  1,  2,  1,  2,  1,  1,  1,  2,  1,  2,  1,  2,  1, ...
| ... |
		

Crossrefs

Columns are A000012, A007733, A007734, A007735, A007736, A007737, A007738, A007739, A007740, A007732. A002322 is the highest value in each row and the least common multiple of each row, while the number of distinct values in each row is A066800.

Programs

  • Mathematica
    t[n_, k_] := For[p = PowerMod[k, n, n]; m = n + 1, True, m++, If[PowerMod[k, m, n] == p, Return[m - n]]]; Flatten[Table[t[n - k + 1, k], {n, 1, 14}, {k, n, 1, -1}]] (* Jean-François Alcover, Jun 04 2012 *)
  • PARI
    a(n, k) = my(p=k^n%n); for(m=n+1, +oo, if(k^m%n==p, return(m-n))) \\ Iain Fox, Mar 12 2018

Formula

T(n, k) = T(n, k-n) if k > n.
T(n, n) = T(n, n+1) = 1.
T(n, n-1) = 2.

A007735 Period of base 4 representation of 1/n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 5, 1, 6, 3, 2, 1, 4, 3, 9, 2, 3, 5, 11, 1, 10, 6, 9, 3, 14, 2, 5, 1, 5, 4, 6, 3, 18, 9, 6, 2, 10, 3, 7, 5, 6, 11, 23, 1, 21, 10, 4, 6, 26, 9, 10, 3, 9, 14, 29, 2, 30, 5, 3, 1, 6, 5, 33, 4, 11, 6, 35, 3, 9, 18, 10, 9, 15, 6, 39, 2, 27, 10, 41, 3, 4, 7, 14, 5, 11, 6, 6, 11, 5
Offset: 1

Views

Author

N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)

Keywords

Crossrefs

Cf. A007733 (base 2), A007734 (3), A007736 (5), A007737 (6), A007738 (7), A007739 (8), A007740 (9), A007732 (10).

Programs

  • Mathematica
    DigitCycleLength[r_Rational, b_Integer?Positive] := MultiplicativeOrder[b, FixedPoint[ Quotient[#, GCD[#, b]] &, Denominator[r]]]; DigitCycleLength[1, b_Integer?Positive] = 1; Array[ DigitCycleLength[1/#, 4] &, 80] (* Robert G. Wilson v, Jun 10 2011 *)
    a[n_] := MultiplicativeOrder[4, n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Aug 26 2024 *)

Extensions

More terms from David W. Wilson

A007739 Period of repeating digits of 1/n in base 8.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 1, 2, 4, 10, 2, 4, 1, 4, 1, 8, 2, 6, 4, 2, 10, 11, 2, 20, 4, 6, 1, 28, 4, 5, 1, 10, 8, 4, 2, 12, 6, 4, 4, 20, 2, 14, 10, 4, 11, 23, 2, 7, 20, 8, 4, 52, 6, 20, 1, 6, 28, 58, 4, 20, 5, 2, 1, 4, 10, 22, 8, 22, 4, 35, 2, 3, 12, 20, 6, 10, 4, 13, 4, 18, 20, 82, 2, 8, 14, 28, 10, 11, 4, 4
Offset: 1

Views

Author

N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)

Keywords

Crossrefs

Cf. A007733 (base 2), A007734 (3), A007735 (4), A007736 (5), A007737 (6), A007738 (7), A007740 (9), A007732 (10).

Programs

  • Mathematica
    DigitCycleLength[r_Rational, b_Integer?Positive] := MultiplicativeOrder[b, FixedPoint[ Quotient[#, GCD[#, b]] &, Denominator[r]]]; DigitCycleLength[1, b_Integer?Positive] = 1; Array[ DigitCycleLength[1/#, 8] &, 80] (* Robert G. Wilson v, Jun 10 2011 *)
    a[n_] := MultiplicativeOrder[8, n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Aug 26 2024 *)

Extensions

More terms from David W. Wilson

A019442 Numbers m such that a Hadamard matrix of order m exists.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240
Offset: 1

Views

Author

N. J. A. Sloane, Oct 16 2008

Keywords

Comments

It is conjectured that this sequence consists of 1, 2 and all multiples of 4.
Already in 1992 Hadamard matrices were known of all orders 4t up through 424.
The old entry with this sequence number was a duplicate of A007740.
Integers m such that a simplex of dimension m - 1 can be inscribed in a hypercube of dimension m - 1. - Violeta Hernández Palacios, Oct 23 2020
Integers m such that an orthoplex of dimension m can be inscribed in a hypercube of dimension m. - Violeta Hernández Palacios, Dec 05 2020
As of today, there remain 12 multiples of 4 less than or equal to 2000 for which no Hadamard matrix of that order is known: 668, 716, 892, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, and 1964 (see comment in A007299). - Bernard Schott, Apr 25 2022; Mar 03 2023

References

  • J. Hadamard, Résolution d'une question relative aux déterminants. Bull. des Sciences Math. (2), 17, 1893, pp. 240-246.
  • M. Hall, Jr., Hadamard matrices of order 16. Research Summary No. 36-10, Jet Propulsion Lab., Pasadena, CA, Vol. 1, 1961, pp. 21-26.
  • M. Hall, Jr., Hadamard matrices of order 20. Technical Report 32-761, Jet Propulsion Lab., Pasadena, CA, 1965.
  • M. Hall, Jr., Combinatorial Theory. 2nd edn. New York: Wiley, 1986.
  • S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, Chapter 7.
  • Jennifer Seberry and Mieko Yamada, Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
  • W. D. Wallis, Anne Penfold Street, and Jennifer Seberry Wallis; Combinatorics: Room squares, sum-free sets, Hadamard matrices. Lecture Notes in Mathematics, Vol. 292. Springer-Verlag, Berlin-New York, 1972. iv+508 pp.

Crossrefs

Formula

Conjectured g.f.: (2*x^3 + x^2 + 1)/(x - 1)^2. - Jean-François Alcover, Oct 03 2016
Showing 1-6 of 6 results.