A007755 Smallest number m such that the trajectory of m under iteration of Euler's totient function phi(n) [A000010] contains exactly n distinct numbers, including m and the fixed point.
1, 2, 3, 5, 11, 17, 41, 83, 137, 257, 641, 1097, 2329, 4369, 10537, 17477, 35209, 65537, 140417, 281929, 557057, 1114129, 2384897, 4227137, 8978569, 16843009, 35946497, 71304257, 143163649, 286331153, 541073537, 1086374209, 2281701377, 4295098369
Offset: 1
Examples
a(3) = 3 because trajectory={3,2,1}. n=1: a(1)=1 because trajectory={1}
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.
- R. K. Guy, Unsolved Problems in Number Theory, 2nd Ed. New York: Springer-Verlag, p. 97, 1994, Section B41.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1002
- P. A. Catlin, Concerning the iterated phi-function, Amer Math. Monthly 77 (1970), pp. 60-61.
- T. D. Noe, Computing Numbers in Section I of the Totient Iteration
- T. D. Noe, Primes in classes of the iterated totient function, JIS 11 (2008) 08.1.2
- Harold Shapiro, An arithmetic function arising from the phi function, Amer. Math. Monthly, Vol. 50, No. 1 (1943), 18-30.
Crossrefs
Programs
-
Haskell
a007755 = (+ 1) . fromJust . (`elemIndex` a003434_list) . (subtract 1) -- Reinhard Zumkeller, Feb 08 2013, Jul 03 2011
-
Mathematica
f[n_] := Length[ NestWhileList[ EulerPhi, n, Unequal, 2]] - 1; a = Table[0, {30}]; Do[b = f[n]; If[a[[b]] == 0, a[[b]] = n; Print[n, " = ", b]], {n, 1, 22500000}] (* Robert G. Wilson v *)
Formula
Extensions
More terms from David W. Wilson, May 15 1997
Additional comments from James S. Cronen (cronej(AT)rpi.edu)
Comments