A007785 Number of sets of positive integers <= n^2 whose sum is (n^3 + n)/2.
1, 1, 2, 17, 306, 10828, 654857, 63019177, 9183937890, 1953896126383, 589909767142505, 247074213707554144, 140902072248206260266, 107704589610917073318533, 108877374411946899963718973, 143864444783939220165210185294, 245934054410000090878614435736720
Offset: 0
Keywords
Examples
a(2) = 2: {1,4}, {2,3}. a(3) = 17: {6,9}, {7,8}, {1,5,9}, {1,6,8}, {2,4,9}, {2,5,8}, {2,6,7}, {3,4,8}, {3,5,7}, {4,5,6}, {1,2,3,9}, {1,2,4,8}, {1,2,5,7}, {1,3,4,7}, {1,3,5,6}, {2,3,4,6}, {1,2,3,4,5}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40 (terms n = 1..18 from Sean A. Irvine)
Crossrefs
Cf. A052456.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i*(i+1)/2
n, 0, b(n-i, min(n-i, i-1))))) end: a:= n-> (s-> b(n*(1+s)/2, s))(n^2): seq(a(n), n=0..16); # Alois P. Heinz, Nov 02 2018 -
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i*(i + 1)/2 < n, 0, b[n, i - 1] + If[i > n, 0, b[n - i, Min[n - i, i - 1]]]]]; a[n_] := With[{s = n^2}, b[n*(1 + s)/2, s]]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
Extensions
Corrected and extended by David W. Wilson
a(12) corrected and more terms from Sean A. Irvine, Jan 27 2018
a(0)=1 prepended by Alois P. Heinz, Nov 02 2018