A052456 Number of magic series of order n.
1, 1, 2, 8, 86, 1394, 32134, 957332, 35154340, 1537408202, 78132541528, 4528684996756, 295011186006282, 21345627856836734, 1698954263159544138, 147553846727480002824, 13888244935445960871352, 1408407905312396429259944, 153105374581396386625831530
Offset: 0
Examples
a(3) = 8 since a magic square of order 3 would require a row sum of 15=(1+2+...+9)/3 and there are 8 ways of writing 15 as the sum of three distinct positive numbers up to 9: 1+5+9, 1+6+8, 2+4+9, 2+5+8, 2+6+7, 3+4+8, 3+5+7, 4+5+6.
References
- M. Kraitchik, Magic Series. Section 7.13.3 in Mathematical Recreations, New York, W. W. Norton, pp. 143 and 183-186, 1942.
Links
- T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..150 (from Gerbicz and Trump)
- H. Bottomley, Partition and composition calculator
- H. Bottomley and W. Trump, First 36 terms
- Walter Trump, Magic Squares.
- Eric Weisstein's World of Mathematics, Magic Series
- Eric Weisstein's World of Mathematics, Multimagic Series
- Robert Gerbicz, Walter Trump, First 150 terms
- Robert Gerbicz, C-program to generate the sequence
Crossrefs
Programs
-
Mathematica
$RecursionLimit = 1000; b[n_, i_, t_] /; i < t || n < t*((t + 1)/2) || n > t*((2*i - t + 1)/2) = 0; b[0, , ] = 1; b[n_, i_, t_] := b[n, i, t] = b[n, i - 1, t] + If[n < i, 0, b[n - i, i - 1, t - 1]]; a[, 0] = 1; a[0, ] = 0; a[n_, k_] := With[{s = k*(k*n + 1)}, If[Mod[s, 2] == 1, 0, b[s/2, k*n, k]]]; a[n_] := a[n] = a[n, n]; Table[Print[a[n]]; a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 15 2013, after Alois P. Heinz *)
Formula
a(n) = A067059(n, n*(n-1)) = r(n, n*(n-1), n^2*(n-1)/2) where r(n, m, k) is a restricted partition function giving the number of partitions of k into at most n positive parts each no more than m. - Henry Bottomley, Feb 25 2002.
It seems a(n) (at least for 2A068606 and assuming the peak of a normal distribution = 1/sqrt(variance*2*Pi) - Henry Bottomley, Feb 25 2002.
a(n) ~ sqrt(3) * exp(n-1/2) * n^(n-3) / Pi. - Vaclav Kotesovec, Sep 05 2014
Extensions
Edited and ten more terms from Henry Bottomley, Feb 16 2002
Terms through a(36) added to attached web page, Feb 04 2005
Comments