A007912 Quantum factorials: (n-1)!! - (n-2)!! (mod n).
1, 1, 0, 1, 5, 1, 0, 1, 2, 3, 0, 1, 0, 1, 0, 9, 2, 15, 0, 1, 2, 9, 0, 1, 0, 7, 0, 15, 2, 1, 0, 1, 0, 27, 0, 1, 0, 25, 0, 21, 2, 11, 0, 1, 45, 33, 0, 25, 0, 39, 0, 27, 0, 49, 0, 1, 57, 15, 0, 1, 0, 1, 0, 33, 2, 51, 0, 35, 2, 9, 0, 1, 0, 19, 0, 39, 77, 65, 0, 1, 81, 63, 0, 1, 0, 33, 0, 45, 0
Offset: 3
References
- S. P. Hurd and J. S. McCranie, Quantum factorials. Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994). Congr. Numer. 104 (1994), 19-24.
Links
- T. D. Noe, Table of n, a(n) for n = 3..2000
- S. P. Hurd and J. S. McCranie, Quantum factorials, 1994.
Programs
-
Maple
a:= n-> (d-> irem(d(n-1)-d(n-2), n))(doublefactorial): seq(a(n), n=3..100); # Alois P. Heinz, Dec 17 2021
-
Mathematica
Table[Mod[(n-1)!!-(n-2)!!,n],{n,3,100}] (* Harvey P. Dale, Aug 07 2012 *)
Formula
a(n) = 0 iff n is odd and not a prime congruent to 3 modulo 4. - Charlie Neder, Feb 24 2019
Comments