cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007970 Rhombic numbers.

Original entry on oeis.org

3, 7, 8, 11, 15, 19, 23, 24, 27, 31, 32, 35, 40, 43, 47, 48, 51, 59, 63, 67, 71, 75, 79, 80, 83, 87, 88, 91, 96, 99, 103, 104, 107, 115, 119, 120, 123, 127, 128, 131, 135, 136, 139, 143, 151, 152, 159, 160, 163, 167, 168, 171, 175, 176, 179
Offset: 1

Views

Author

Keywords

Comments

A191856(n) = A007966(a(n)); A191857(n) = A007967(a(n)). - Reinhard Zumkeller, Jun 18 2011
This sequence gives the values d of the Pell equation x^2 - d*y^2 = +1 that have positive fundamental solutions (x0, y0) with odd y0. This was first conjectured and is proved provided Conway's theorem in the link is assumed and the proof of the conjecture stated in A007869, given there in a W. Lang link, is used. - Wolfdieter Lang, Sep 19 2015
For a proof of Conway's theorem on the happy number factorization see the W. Lang link (together with the link given under A007969). - Wolfdieter Lang, Oct 04 2015

Crossrefs

Every number belongs to exactly one of A000290, A007969, A007970.
Cf. A007968.
Subsequence of A000037, A002145 is a subsequence.
A263008 (T numbers), A263009 (U numbers).

Programs

  • Haskell
    a007970 n = a007970_list !! (n-1)
    a007970_list = filter ((== 2) . a007968) [0..]
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + 2 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]);
    f[n_] := f[n] = If[! IntegerQ[Sqrt[n]], Catch[Do[{b, c} = bc; If[ (r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; If[OddQ[x0] && OddQ[y0], Throw[n]]]; If[ (r0 = r[c, b]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; If[OddQ[x0] && OddQ[y0], Throw[n]]], {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]} ]]];
    A007970 = Reap[ Table[ If[f[n] =!= Null, Print[f[n]]; Sow[f[n]]], {n, 1, 180}] ][[2, 1]](* Jean-François Alcover, Jun 26 2012 *)

Formula

a(n) = A191856(n)*A191857(n); A007968(a(n))=2. - Reinhard Zumkeller, Jun 18 2011
a(n) is in the sequence if a(n) = D*E with positive integers D and E, such that E*U^2 - D*T^2 = 2 has an integer solution with U*T odd (without loss of generality one may take U and T positive). See the Conway link. D and E are given in A191856 and A191857, respectively. - Wolfdieter Lang, Oct 05 2015

Extensions

159 and 175 inserted by Jean-François Alcover, Jun 26 2012