cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A262026 The positive odd fundamental solutions y = y0(n) for the Pell equation x^2 - d*y^2 = +1. It turns out that d = d(n) coincides with A007970(n).

Original entry on oeis.org

1, 3, 1, 3, 1, 39, 5, 1, 5, 273, 3, 1, 3, 531, 7, 1, 7, 69, 1, 5967, 413, 3, 9, 1, 9, 3, 21, 165, 5, 1, 22419, 5, 93, 105, 11, 1, 11, 419775, 51, 927, 21, 3, 6578829, 1, 140634693, 3, 105, 57, 5019135, 13, 1, 13, 153, 15, 313191, 123, 650783, 7, 1, 1153080099, 7, 45, 19162705353, 3, 33, 5
Offset: 1

Views

Author

Wolfdieter Lang, Oct 04 2015

Keywords

Comments

The corresponding x = x0(n) values are given by A262027(n).
This is a proper subset of A033317 corresponding to its odd members.
For the proof that d(n) = A007970(n), the products of Conway's 2-happy couples, see the W. Lang link under A007970.
For the positive even fundamental solutions y = y0(n) of x^2 - d*y^2 = 1, where d = d(n) coincides with A007969(n) see 2*A261250(n).
If d(n) = A007970(n) is odd (necessarily congruent to 3 modulus 4) then x0(n) is even, and if d(n) is even (necessarily congruent to 0 modulus 8) then x0 is odd.

Examples

			The first triples [d(n), x0(n), y0(n)] are: [3,2,1], [7,8,3], [8,3,1], [11,10,3], [15,4,1], [19,170,39], [23,24,5], [24,5,1], [27,26,5], [31,1520,273], [32,17,3], [35,6,1], [40,19,3], [43,3482,531], [47,48,7], [48,7,1], [51,50,7], [59,530,69], [63,8,1], [67,48842,5967], [71,3480,413], [75,26,3], [79,80,9], [80,9,1], [83,82,9], [87,28,3], [88,197,21], [91,1574,165], [96,49,5], [99,10,1], [103,227528,22419], ...
		

Crossrefs

Formula

x0(n)^2 - d(n)*a(n)^2 = +1 with x0(n) =
A262027(n) and d(n) = A007970(n). (x0(n), y0(n) = a(n)) are the positive fundamental solutions of this Pell equation x^2 - d*y^2 = +1 with odd y = y0.

A262027 The positive fundamental solutions x = x0(n) for the Pell equation x^2 - d*y^2 = +1 with odd y = y0(n). Then d coincides with d(n) = A007970(n).

Original entry on oeis.org

2, 8, 3, 10, 4, 170, 24, 5, 26, 1520, 17, 6, 19, 3482, 48, 7, 50, 530, 8, 48842, 3480, 26, 80, 9, 82, 28, 197, 1574, 49, 10, 227528, 51, 962, 1126, 120, 11, 122, 4730624, 577, 10610, 244, 35, 77563250, 12, 1728148040, 37, 1324, 721, 64080026, 168, 13, 170, 2024, 199, 4190210
Offset: 1

Views

Author

Wolfdieter Lang, Oct 04 2015

Keywords

Comments

The corresponding values y = y0(n) are given by A262026(n).
This is a proper subset of A033313 corresponding to D values from d(n) = A007970(n).
For the proof that d(n) = A007970(n), the products of Conway's 2-happy couples, see the W. Lang link under A007970.
If d(n) = A007970(n) is odd (necessarily congruent to 3 modulus 4) then x0(n) is even, and if d(n) is even (necessarily congruent to 0 modulus 8) then x0 is odd.

Examples

			For the first [d(n), x0(n), y0(n)] see A262026.
		

Crossrefs

Formula

a(n)^2 - d(n)*y0(n)^2 = +1 with y0(n) = A262026(n) and d(n) = A007970(n). (x0(n) = a(n), y0(n)) are the positive fundamental solutions of this Pell equation x^2 - d*y^2 = +1 with odd y = y0.

A002145 Primes of the form 4*k + 3.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571
Offset: 1

Views

Author

Keywords

Comments

Or, odd primes p such that -1 is not a square mod p, i.e., the Legendre symbol (-1/p) = -1. [LeVeque I, p. 66]. - N. J. A. Sloane, Jun 28 2008
Primes which are not the sum of two squares, see the comment in A022544. - Artur Jasinski, Nov 15 2006
Natural primes which are also Gaussian primes. (It is a common error to refer to this sequence as "the Gaussian primes".)
Inert rational primes in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
Numbers n such that the product of coefficients of (2n)-th cyclotomic polynomial equals -1. - Benoit Cloitre, Oct 22 2002
For p and q both belonging to the sequence, exactly one of the congruences x^2 = p (mod q), x^2 = q (mod p) is solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Also primes p that divide L((p-1)/2) or L((p+1)/2), where L(n) = A000032(n), the Lucas numbers. Union of A122869 and A122870. - Alexander Adamchuk, Sep 16 2006
Also odd primes p that divide ((p-1)!! + 1) or ((p-2)!! + 1). - Alexander Adamchuk, Nov 30 2006
Also odd primes p that divide ((p-1)!! - 1) or ((p-2)!! - 1). - Alexander Adamchuk, Apr 18 2007
This sequence is a proper subset of the set of the absolute values of negative fundamental discriminants (A003657). - Paul Muljadi, Mar 29 2008
Bernard Frénicle de Bessy discovered that such primes cannot be the hypotenuse of a Pythagorean triangle in opposition to primes of the form 4*n+1 (see A002144). - after Paul Curtz, Sep 10 2008
A079261(a(n)) = 1; complement of A145395. - Reinhard Zumkeller, Oct 12 2008
Subsequence of A007970. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = -1.
Primes p such that p XOR 2 = p - 2. Brad Clardy, Oct 25 2011 (Misleading in the sense that this is a formula for the super-sequence A004767. - R. J. Mathar, Jul 28 2014)
It appears that each term of A004767 is the mean of two terms of this subsequence of primes therein; cf. A245203. - M. F. Hasler, Jul 13 2014
Numbers n > 2 such that ((n-2)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 24 2016
Odd numbers n > 1 such that ((n-1)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 25 2016
Primes p such that (p-2)!! == (p-3)!! (mod p). - Thomas Ordowski, Jul 28 2016
See Granville and Martin for a discussion of the relative numbers of primes of the form 4k+1 and 4k+3. - Editors, May 01 2017
Sometimes referred to as Blum primes for their connection to A016105 and the Blum Blum Shub generator. - Charles R Greathouse IV, Jun 14 2018
Conjecture: a(n) for n > 4 can be written as a sum of 3 primes of the form 4k+1, which would imply that primes of the form 4k+3 >= 23 can be decomposed into a sum of 6 nonzero squares. - Thomas Scheuerle, Feb 09 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 146-147.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 252.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 66.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Apart from initial term, same as A045326.
Cf. A016105.
Cf. A004614 (multiplicative closure).

Programs

  • Haskell
    a002145 n = a002145_list !! (n-1)
    a002145_list = filter ((== 1) . a010051) [3, 7 ..]
    -- Reinhard Zumkeller, Aug 02 2015, Sep 23 2011
    
  • Magma
    [4*n+3 : n in [0..142] | IsPrime(4*n+3)]; // Arkadiusz Wesolowski, Nov 15 2013
    
  • Maple
    A002145 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            a := nextprime(procname(n-1)) ;
            while a mod 4 <>  3 do
                a := nextprime(a) ;
            end do;
            return a;
        end if;
    end proc:
    seq(A002145(n),n=1..20) ; # R. J. Mathar, Dec 08 2011
  • Mathematica
    Select[4Range[150] - 1, PrimeQ] (* Alonso del Arte, Dec 19 2013 *)
    Select[ Prime@ Range[2, 110], Length@ PowersRepresentations[#^2, 2, 2] == 1 &] (* or *)
    Select[ Prime@ Range[2, 110], JacobiSymbol[-1, #] == -1 &] (* Robert G. Wilson v, May 11 2014 *)
  • PARI
    forprime(p=2,1e3,if(p%4==3,print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Sage
    def A002145_list(n): return [p for p in prime_range(1, n + 1) if p % 4 == 3]  # Peter Luschny, Jul 29 2014

Formula

Remove from A000040 terms that are in A002313.
Intersection of A000040 and A004767. - Alonso del Arte, Apr 22 2014
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A243379.
Product_{k>=1} (1 + 1/a(k)^2) = A243381.
Product_{k>=1} (1 - 1/a(k)^3) = A334427.
Product_{k>=1} (1 + 1/a(k)^3) = A334426.
Product_{k>=1} (1 - 1/a(k)^4) = A334448.
Product_{k>=1} (1 + 1/a(k)^4) = A334447.
Product_{k>=1} (1 - 1/a(k)^5) = A334452.
Product_{k>=1} (1 + 1/a(k)^5) = A334451. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/a(k)) / (1 + 1/A002144(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/a(k)) / (1 - 1/A002144(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log(2 * (2^(n*s) - 1) * (n*s - 1)! * zeta(n*s) / (Pi^(n*s) * abs(EulerE(n*s - 1))))/n, s >= 3 odd number. - Dimitris Valianatos, May 20 2020

Extensions

More terms from James Sellers, Apr 21 2000

A000037 Numbers that are not squares (or, the nonsquares).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Keywords

Comments

Note the remarkable formula for the n-th term (see the FORMULA section)!
These are the natural numbers with an even number of divisors. The number of divisors is odd for the complementary sequence, the squares (sequence A000290) and the numbers for which the number of divisors is divisible by 3 is sequence A059269. - Ola Veshta (olaveshta(AT)my-deja.com), Apr 04 2001
a(n) is the largest integer m not equal to n such that n = (floor(n^2/m) + m)/2. - Alexander R. Povolotsky, Feb 10 2008
Union of A007969 and A007970; A007968(a(n)) > 0. - Reinhard Zumkeller, Jun 18 2011
Terms of even numbered rows in the triangle A199332. - Reinhard Zumkeller, Nov 23 2011
If a(n) and a(n+1) are of the same parity then (a(n)+a(n+1))/2 is a square. - Zak Seidov, Aug 13 2012
Theaetetus of Athens proved the irrationality of the square roots of these numbers in the 4th century BC. - Charles R Greathouse IV, Apr 18 2013
4*a(n) are the even members of A079896, the discriminants of indefinite binary quadratic forms. - Wolfdieter Lang, Jun 14 2013

Examples

			For example note that the squares 0, 1, 4, 9, 16 are not included.
		

References

  • Titu Andreescu, Dorin Andrica, and Zuming Feng, 104 Number Theory Problems, Birkhäuser, 2006, 58-60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A242401 (subsequence).
Cf. A086849 (partial sums), A048395.

Programs

  • Haskell
    a000037 n = n + a000196 (n + a000196 n)
    -- Reinhard Zumkeller, Nov 23 2011
    
  • Magma
    [n : n in [1..1000] | not IsSquare(n) ];
    
  • Magma
    at:=0; for n in [1..10000] do if not IsSquare(n) then at:=at+1; print at, n; end if; end for;
    
  • Maple
    A000037 := n->n+floor(1/2+sqrt(n));
  • Mathematica
    a[n_] := (n + Floor[Sqrt[n + Floor[Sqrt[n]]]]); Table[a[n], {n, 71}] (* Robert G. Wilson v, Sep 24 2004 *)
    With[{upto=100},Complement[Range[upto],Range[Floor[Sqrt[upto]]]^2]] (* Harvey P. Dale, Dec 02 2011 *)
    a[ n_] :=  If[ n < 0, 0, n + Round @ Sqrt @ n]; (* Michael Somos, May 28 2014 *)
  • Maxima
    A000037(n):=n + floor(1/2 + sqrt(n))$ makelist(A000037(n),n,1,50); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, n + (1 + sqrtint(4*n)) \ 2)};
    
  • Python
    from math import isqrt
    def A000037(n): return n+isqrt(n+isqrt(n)) # Chai Wah Wu, Mar 31 2022
    
  • Python
    from math import isqrt
    def A000037(n): return n+(k:=isqrt(n))+int(n>=k*(k+1)+1) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + floor(1/2 + sqrt(n)).
a(n) = n + floor(sqrt( n + floor(sqrt n))).
A010052(a(n)) = 0. - Reinhard Zumkeller, Jan 26 2010
A173517(a(n)) = n; a(n)^2 = A030140(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = A000194(n) + n. - Jaroslav Krizek, Jun 14 2009
a(A002061(n)) = a(n^2-n+1) = A002522(n) = n^2 + 1. - Jaroslav Krizek, Jun 21 2009

Extensions

Edited by Charles R Greathouse IV, Oct 30 2009

A007969 Rectangular numbers.

Original entry on oeis.org

2, 5, 6, 10, 12, 13, 14, 17, 18, 20, 21, 22, 26, 28, 29, 30, 33, 34, 37, 38, 39, 41, 42, 44, 45, 46, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 82, 84, 85, 86, 89, 90, 92, 93, 94, 95, 97, 98, 101, 102, 105, 106, 108, 109
Offset: 1

Views

Author

Keywords

Comments

A191854(n) = A007966(a(n)); A191855(n) = A007967(a(n)). - Reinhard Zumkeller, Jun 18 2011
It seems that D(n) = 4*a(n) gives precisely those even discriminants D from 4*A000037 of indefinite binary quadratic forms that have only improper solutions of the Pell equation x^2 - D*y^2 = +4. Conjecture tested for n = 1..66. Alternatively, the conjecture is that this sequence gives the r values for the Pell equation X^2 + r Y^2 = +1 whenever Y is even. See A261249 and A261250. - Wolfdieter Lang, Sep 16 2015
The proof of these two versions of the conjecture is given in the W. Lang link. - Wolfdieter Lang, Sep 19 2015 (revised Oct 03 2015)

Examples

			From _Wolfdieter Lang_, Sep 18 2015: (Start)
a(1) = 5 = 5*1 and 5*1^2 - 1*2^2  = 1.
a(7) = 14 = 2*7 and 2*2^2 - 7*1^2 = 1. (End)
		

Crossrefs

Every number belongs to exactly one of A000290, A007969, A007970.
Cf. A191854 (B numbers), A191855 (C numbers).
Subsequence of A000037, A002144 is a subsequence.
A263006 (R numbers), A263007 (S numbers).

Programs

  • Haskell
    a007969 n = a007969_list !! (n-1)
    a007969_list = filter ((== 1) . a007968) [0..]
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A007969 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[n]], {n, 1, 130}]][[2, 1]] (* Jean-François Alcover, Jun 26 2012, updated Sep 18 2015 *)

Formula

a(n) = A191854(n)*A191855(n); A007968(a(n)) = 1. - Reinhard Zumkeller, Jun 18 2011
a(n) is in the sequence if a(n) = C*B with integers B >= 1 and C >= 2, such that C*S^2 - B*R^2 = 1 has an integer solution (without loss of generality one may take S and R positive). See the Conway link. - Wolfdieter Lang, Sep 18 2015

A007968 Type of happy factorization of n.

Original entry on oeis.org

0, 0, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 2, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a007968 = (\(hType,,,_,_) -> hType) . h
    h 0 = (0, 0, 0, 0, 0)
    h x = if a > 0 then (0, a, a, a, a) else h' 1 divs
          where a = a037213 x
                divs = a027750_row x
                h' r []                                = h' (r + 1) divs
                h' r (d:ds)
                 | d' > 1 && rest1 == 0 && ss == s ^ 2 = (1, d, d', r, s)
                 | rest2 == 0 && odd u && uu == u ^ 2  = (2, d, d', t, u)
                 | otherwise                           = h' r ds
                 where (ss, rest1) = divMod (d * r ^ 2 + 1) d'
                       (uu, rest2) = divMod (d * t ^ 2 + 2) d'
                       s = a000196 ss; u = a000196 uu; t = 2 * r - 1
                       d' = div x d
    hs = map h [0..]
    hCouples = map (\(, factor1, factor2, , _) -> (factor1, factor2)) hs
    sqrtPair n = genericIndex sqrtPairs (n - 1)
    sqrtPairs = map (\(, , _, sqrt1, sqrt2) -> (sqrt1, sqrt2)) hs
    -- Reinhard Zumkeller, Oct 11 2015

Formula

a(A000290(n)) = 0; a(A007969(n)) = 1; a(A007970(n)) = 2.

A007966 First factor in happy factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 7, 2, 3, 1, 1, 3, 1, 7, 3, 4, 1, 2, 1, 4, 3, 2, 23, 4, 5, 1, 1, 7, 1, 5, 31, 16, 11, 17, 5, 6, 1, 2, 3, 2, 1, 6, 1, 11, 5, 23, 47, 6, 7, 1, 1, 4, 1, 2, 11, 7, 3, 1, 1, 15, 1, 31, 7, 8, 1, 2, 1, 4, 23, 5, 71, 8, 1, 1, 25, 19, 7, 26, 79, 8, 9, 1, 1, 3, 1, 2, 3, 4, 1, 9
Offset: 0

Views

Author

Keywords

Comments

a(n) = n / A007967(n);
a(A007969(n)) = A191854(n); a(A007970(n)) = A191856(n). - Reinhard Zumkeller, Jun 18 2011

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a007966 n = genericIndex a007966_list n
    a007966_list = map fst hCouples
    -- Pairs hCouples are defined in A007968.
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_, d_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + d == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, red[[1]], red]); f[n_] := f[n] = If[IntegerQ[rn = Sqrt[n]], {0, rn, rn, rn, rn}, Catch[Do[b = bc[[1]]; c = bc[[2]]; If[ c > 1 && (r0 = r[b, c, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, b, c, x0, y0}]]; If[ b > 1 && (r0 = r[c, b, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, c, b, x0, y0}]]; If[ (r0 = r[b, c, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, b, c, x0, y0}]]]; If[ (r0 = r[c, b, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, c, b, x0, y0}]]]; , {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]} ]]]; a[n_] := f[n][[2]]; A007966 = Table[Print[a[n]]; a[n], {n, 0, 90}] (* Jean-François Alcover, Jun 25 2012 *)

A007967 Second factor in happy factorization of n.

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 3, 1, 4, 3, 10, 11, 4, 13, 2, 5, 4, 17, 9, 19, 5, 7, 11, 1, 6, 5, 26, 27, 4, 29, 6, 1, 2, 3, 2, 7, 6, 37, 19, 13, 20, 41, 7, 43, 4, 9, 2, 1, 8, 7, 50, 51, 13, 53, 27, 5, 8, 19, 58, 59, 4, 61, 2, 9, 8, 65, 33, 67, 17, 3, 14, 1, 9, 73, 74, 3, 4, 11, 3, 1, 10, 9, 82, 83
Offset: 0

Views

Author

Keywords

Comments

a(n) = n / A007966(n);
a(A007969(n)) = A191855(n); a(A007970(n)) = A191857(n). - Reinhard Zumkeller, Jun 18 2011

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a007967 n = genericIndex a007967_list n
    a007967_list = map snd hCouples
    -- Pairs hCouples are defined in A007968.
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_,  d_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + d == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, red[[1]], red]); f[n_] := f[n] =  If[IntegerQ[rn = Sqrt[n]], {0, rn, rn, rn, rn},  Catch[Do[b = bc[[1]]; c = bc[[2]]; If[c > 1 && (r0 = r[b, c, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, b, c, x0, y0}]]; If[b > 1 && (r0 = r[c, b, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, c, b, x0, y0}]]; If[(r0 = r[b, c, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, b, c, x0, y0}]]]; If[(r0 = r[c, b, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, c, b, x0, y0}]]];, {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]}]]];a[n_] := f[n][[3]]; A007967 = Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 90}] (* Jean-François Alcover, Sep 18 2015 *)

A191856 First factor in happy factorization of n-th rhombic number.

Original entry on oeis.org

1, 7, 2, 1, 3, 1, 23, 4, 1, 31, 16, 5, 2, 1, 47, 6, 1, 1, 7, 1, 71, 25, 79, 8, 1, 3, 4, 13, 48, 9, 103, 2, 1, 5, 119, 10, 1, 127, 64, 1, 27, 34, 1, 11, 151, 4, 3, 80, 1, 167, 12, 1, 7, 22, 1, 1, 191, 96, 13, 199, 2, 8, 1, 43, 4, 73, 223, 14, 1, 3, 2, 5, 239
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 18 2011

Keywords

Comments

a(n) = A007966(A007970(n)) = A007970(n) / A191857(n);
(a(n), A191857(n)) is a 2-happy couple;
notation: D in the Conway link.

Crossrefs

Programs

Extensions

Wrong formula removed (thanks to Wolfdieter Lang, who pointed this out) by Reinhard Zumkeller, Oct 11 2015

A191857 Second factor in happy factorization of n-th rhombic number.

Original entry on oeis.org

3, 1, 4, 11, 5, 19, 1, 6, 27, 1, 2, 7, 20, 43, 1, 8, 51, 59, 9, 67, 1, 3, 1, 10, 83, 29, 22, 7, 2, 11, 1, 52, 107, 23, 1, 12, 123, 1, 2, 131, 5, 4, 139, 13, 1, 38, 53, 2, 163, 1, 14, 171, 25, 8, 179, 187, 1, 2, 15, 1, 100, 26, 211, 5, 54, 3, 1, 16, 227, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 18 2011

Keywords

Comments

a(n) = A007967(A007970(n)) = A007970(n) / A191856(n);
(A191856(n), a(n)) is a 2-happy couple;
notation: E in the Conway link.

Crossrefs

Programs

Extensions

Wrong formula removed (thanks to Wolfdieter Lang, who pointed this out), by Reinhard Zumkeller, Oct 11 2015
Showing 1-10 of 18 results. Next