cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001477 The nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, and lists normally have offset 1, it seems better to make an exception in this case. - N. J. A. Sloane, Mar 13 2010
The subsequence 0,1,2,3,4 gives the known values of n such that 2^(2^n)+1 is a prime (see A019434, the Fermat primes). - N. J. A. Sloane, Jun 16 2010
Also: The identity map, defined on the set of nonnegative integers. The restriction to the positive integers yields the sequence A000027. - M. F. Hasler, Nov 20 2013
The number of partitions of 2n into exactly 2 parts. - Colin Barker, Mar 22 2015
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 8960 or 168.- Philippe A.J.G. Chevalier, Dec 29 2015
Partial sums give A000217. - Omar E. Pol, Jul 26 2018
First differences are A000012 (the "all 1's" sequence). - M. F. Hasler, May 30 2020
See A061579 for the transposed infinite square matrix, or triangle with rows reversed. - M. F. Hasler, Nov 09 2021
This is the unique sequence (a(n)) that satisfies the inequality a(n+1) > a(a(n)) for all n in N. This simple and surprising result comes from the 6th problem proposed by Bulgaria during the second day of the 19th IMO (1977) in Belgrade (see link and reference). - Bernard Schott, Jan 25 2023

Examples

			Triangular view:
   0
   1   2
   3   4   5
   6   7   8   9
  10  11  12  13  14
  15  16  17  18  19  20
  21  22  23  24  25  26  27
  28  29  30  31  32  33  34  35
  36  37  38  39  40  41  42  43  44
  45  46  47  48  49  50  51  52  53  54
		

References

  • Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.

Crossrefs

Cf. A000027 (n>=1).
Cf. A000012 (first differences).
Partial sums of A057427. - Jeremy Gardiner, Sep 08 2002
Cf. A038608 (alternating signs), A001787 (binomial transform).
Cf. A055112.
Cf. Boustrophedon transforms: A231179, A000737.
Cf. A245422.
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.
When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.
Cf. A000290.
Cf. A061579 (transposed matrix / reversed triangle).

Programs

Formula

a(n) = n.
a(0) = 0, a(n) = a(n-1) + 1.
G.f.: x/(1-x)^2.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: x*e^x. - Franklin T. Adams-Watters, Sep 11 2005
a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
Alternating partial sums give A001057 = A000217 - 2*(A008794). - Eric Desbiaux, Oct 28 2008
a(n) = 2*A080425(n) + 3*A008611(n-3), n>1. - Eric Desbiaux, Nov 15 2009
a(n) = A007966(n)*A007967(n). - Reinhard Zumkeller, Jun 18 2011
a(n) = Sum_{k>=0} A030308(n,k)*2^k. - Philippe Deléham, Oct 20 2011
a(n) = 2*A028242(n-1) + (-1)^n*A000034(n-1). - R. J. Mathar, Jul 20 2012
a(n+1) = det(C(i+1,j), 1 <= i, j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n-1) = floor(n/e^(1/n)) for n > 0. - Richard R. Forberg, Jun 22 2013
a(n) = A000027(n) for all n>0.
a(n) = floor(cot(1/(n+1))). - Clark Kimberling, Oct 08 2014
a(0)=0, a(n>0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n>0); a 1 to 1 correspondence between integers and naturals. - Adriano Caroli, Mar 29 2015
G.f. as triangle: x*(1 + (x^2 - 5*x + 2)*y + x*(2*x - 1)*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 22 2025

A007969 Rectangular numbers.

Original entry on oeis.org

2, 5, 6, 10, 12, 13, 14, 17, 18, 20, 21, 22, 26, 28, 29, 30, 33, 34, 37, 38, 39, 41, 42, 44, 45, 46, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 82, 84, 85, 86, 89, 90, 92, 93, 94, 95, 97, 98, 101, 102, 105, 106, 108, 109
Offset: 1

Views

Author

Keywords

Comments

A191854(n) = A007966(a(n)); A191855(n) = A007967(a(n)). - Reinhard Zumkeller, Jun 18 2011
It seems that D(n) = 4*a(n) gives precisely those even discriminants D from 4*A000037 of indefinite binary quadratic forms that have only improper solutions of the Pell equation x^2 - D*y^2 = +4. Conjecture tested for n = 1..66. Alternatively, the conjecture is that this sequence gives the r values for the Pell equation X^2 + r Y^2 = +1 whenever Y is even. See A261249 and A261250. - Wolfdieter Lang, Sep 16 2015
The proof of these two versions of the conjecture is given in the W. Lang link. - Wolfdieter Lang, Sep 19 2015 (revised Oct 03 2015)

Examples

			From _Wolfdieter Lang_, Sep 18 2015: (Start)
a(1) = 5 = 5*1 and 5*1^2 - 1*2^2  = 1.
a(7) = 14 = 2*7 and 2*2^2 - 7*1^2 = 1. (End)
		

Crossrefs

Every number belongs to exactly one of A000290, A007969, A007970.
Cf. A191854 (B numbers), A191855 (C numbers).
Subsequence of A000037, A002144 is a subsequence.
A263006 (R numbers), A263007 (S numbers).

Programs

  • Haskell
    a007969 n = a007969_list !! (n-1)
    a007969_list = filter ((== 1) . a007968) [0..]
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A007969 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[n]], {n, 1, 130}]][[2, 1]] (* Jean-François Alcover, Jun 26 2012, updated Sep 18 2015 *)

Formula

a(n) = A191854(n)*A191855(n); A007968(a(n)) = 1. - Reinhard Zumkeller, Jun 18 2011
a(n) is in the sequence if a(n) = C*B with integers B >= 1 and C >= 2, such that C*S^2 - B*R^2 = 1 has an integer solution (without loss of generality one may take S and R positive). See the Conway link. - Wolfdieter Lang, Sep 18 2015

A007970 Rhombic numbers.

Original entry on oeis.org

3, 7, 8, 11, 15, 19, 23, 24, 27, 31, 32, 35, 40, 43, 47, 48, 51, 59, 63, 67, 71, 75, 79, 80, 83, 87, 88, 91, 96, 99, 103, 104, 107, 115, 119, 120, 123, 127, 128, 131, 135, 136, 139, 143, 151, 152, 159, 160, 163, 167, 168, 171, 175, 176, 179
Offset: 1

Views

Author

Keywords

Comments

A191856(n) = A007966(a(n)); A191857(n) = A007967(a(n)). - Reinhard Zumkeller, Jun 18 2011
This sequence gives the values d of the Pell equation x^2 - d*y^2 = +1 that have positive fundamental solutions (x0, y0) with odd y0. This was first conjectured and is proved provided Conway's theorem in the link is assumed and the proof of the conjecture stated in A007869, given there in a W. Lang link, is used. - Wolfdieter Lang, Sep 19 2015
For a proof of Conway's theorem on the happy number factorization see the W. Lang link (together with the link given under A007969). - Wolfdieter Lang, Oct 04 2015

Crossrefs

Every number belongs to exactly one of A000290, A007969, A007970.
Cf. A007968.
Subsequence of A000037, A002145 is a subsequence.
A263008 (T numbers), A263009 (U numbers).

Programs

  • Haskell
    a007970 n = a007970_list !! (n-1)
    a007970_list = filter ((== 2) . a007968) [0..]
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + 2 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]);
    f[n_] := f[n] = If[! IntegerQ[Sqrt[n]], Catch[Do[{b, c} = bc; If[ (r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; If[OddQ[x0] && OddQ[y0], Throw[n]]]; If[ (r0 = r[c, b]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; If[OddQ[x0] && OddQ[y0], Throw[n]]], {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]} ]]];
    A007970 = Reap[ Table[ If[f[n] =!= Null, Print[f[n]]; Sow[f[n]]], {n, 1, 180}] ][[2, 1]](* Jean-François Alcover, Jun 26 2012 *)

Formula

a(n) = A191856(n)*A191857(n); A007968(a(n))=2. - Reinhard Zumkeller, Jun 18 2011
a(n) is in the sequence if a(n) = D*E with positive integers D and E, such that E*U^2 - D*T^2 = 2 has an integer solution with U*T odd (without loss of generality one may take U and T positive). See the Conway link. D and E are given in A191856 and A191857, respectively. - Wolfdieter Lang, Oct 05 2015

Extensions

159 and 175 inserted by Jean-François Alcover, Jun 26 2012

A007967 Second factor in happy factorization of n.

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 3, 1, 4, 3, 10, 11, 4, 13, 2, 5, 4, 17, 9, 19, 5, 7, 11, 1, 6, 5, 26, 27, 4, 29, 6, 1, 2, 3, 2, 7, 6, 37, 19, 13, 20, 41, 7, 43, 4, 9, 2, 1, 8, 7, 50, 51, 13, 53, 27, 5, 8, 19, 58, 59, 4, 61, 2, 9, 8, 65, 33, 67, 17, 3, 14, 1, 9, 73, 74, 3, 4, 11, 3, 1, 10, 9, 82, 83
Offset: 0

Views

Author

Keywords

Comments

a(n) = n / A007966(n);
a(A007969(n)) = A191855(n); a(A007970(n)) = A191857(n). - Reinhard Zumkeller, Jun 18 2011

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a007967 n = genericIndex a007967_list n
    a007967_list = map snd hCouples
    -- Pairs hCouples are defined in A007968.
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_,  d_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + d == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, red[[1]], red]); f[n_] := f[n] =  If[IntegerQ[rn = Sqrt[n]], {0, rn, rn, rn, rn},  Catch[Do[b = bc[[1]]; c = bc[[2]]; If[c > 1 && (r0 = r[b, c, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, b, c, x0, y0}]]; If[b > 1 && (r0 = r[c, b, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, c, b, x0, y0}]]; If[(r0 = r[b, c, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, b, c, x0, y0}]]]; If[(r0 = r[c, b, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, c, b, x0, y0}]]];, {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]}]]];a[n_] := f[n][[3]]; A007967 = Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 90}] (* Jean-François Alcover, Sep 18 2015 *)

A191854 First factor in happy factorization of n-th rectangular number.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 7, 1, 2, 4, 3, 2, 1, 7, 1, 5, 11, 17, 1, 2, 3, 1, 6, 11, 5, 23, 1, 4, 1, 2, 11, 7, 3, 1, 15, 1, 31, 1, 2, 4, 23, 5, 8, 1, 1, 19, 7, 26, 1, 3, 1, 2, 1, 9, 23, 3, 47, 19, 1, 49, 1, 2, 5, 1, 27, 1, 10, 3, 7, 1, 2, 4, 9, 2, 1, 31, 1, 14, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 18 2011

Keywords

Comments

a(n) = A007966(A007969(n)) = A007969(n) / A191855(n);
(a(n), A191855(n)) is a 1-happy couple;
notation: B in the Conway link.

Crossrefs

Programs

  • Haskell
    a191854 = a007966 . a007969  -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A191854 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[f[n][[1]]]], {n, 1, 130}]][[2, 1]] (* Jean-François Alcover, Sep 18 2015 *)

Extensions

Wrong formula removed (thanks to Wolfdieter Lang, who pointed this out) by Reinhard Zumkeller, Oct 11 2015

A191856 First factor in happy factorization of n-th rhombic number.

Original entry on oeis.org

1, 7, 2, 1, 3, 1, 23, 4, 1, 31, 16, 5, 2, 1, 47, 6, 1, 1, 7, 1, 71, 25, 79, 8, 1, 3, 4, 13, 48, 9, 103, 2, 1, 5, 119, 10, 1, 127, 64, 1, 27, 34, 1, 11, 151, 4, 3, 80, 1, 167, 12, 1, 7, 22, 1, 1, 191, 96, 13, 199, 2, 8, 1, 43, 4, 73, 223, 14, 1, 3, 2, 5, 239
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 18 2011

Keywords

Comments

a(n) = A007966(A007970(n)) = A007970(n) / A191857(n);
(a(n), A191857(n)) is a 2-happy couple;
notation: D in the Conway link.

Crossrefs

Programs

Extensions

Wrong formula removed (thanks to Wolfdieter Lang, who pointed this out) by Reinhard Zumkeller, Oct 11 2015

A191914 Smallest number m greater than n such that the happy couples of m and n have a member in common.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 12, 12, 11, 13, 15, 17, 18, 20, 20, 19, 22, 23, 24, 28, 32, 26, 28, 30, 27, 29, 35, 31, 35, 37, 34, 39, 38, 42, 42, 41, 40, 52, 46, 43, 48, 47, 52, 55, 54, 50, 56, 56, 51, 53, 60, 58, 62, 70, 63, 69, 59, 61, 68, 65, 66, 72, 72, 67, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 19 2011

Keywords

Comments

The intersection of {A007966(n),A007967(n)} and {A007966(a(n)),A007967(a(n))} is not empty, but the intersection of {A007966(n),A007967(n)} and {A007966(m),A007967(m)} is empty for n

Examples

			Let hc(n) = (A007966(n),A007967(n)),
n=6, a(6) =  8: hc(6) = (2,3) and hc(8)  = (2,4)  with common 2,
n=7, a(7) = 10: hc(7) = (7,1) and hc(10) = (1,10) with common 1,
n=8, a(8) = 12: hc(8) = (2,4) and hc(12) = (3,4)  with common 4,
n=9, a(9) = 12: hc(9) = (3,3) and hc(12) = (3,4)  with common 3.
		

A262324 Conway's triangle of "happy factorizations" (flattened).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 3, 2, 2, 1, 5, 2, 3, 7, 1, 2, 4, 3, 3, 1, 10, 1, 11, 3, 4, 1, 13, 7, 2, 3, 5, 4, 4, 1, 17, 2, 9, 1, 19, 4, 5, 3, 7, 2, 11, 23, 1, 4, 6, 5, 5, 1, 26, 1, 27, 7, 4, 1, 29, 5, 6, 31, 1, 16, 2, 11, 3, 17, 2, 5, 7, 6, 6, 1, 37, 2, 19, 3, 13, 2, 20, 1, 41, 6, 7, 1, 43, 11, 4, 5, 9, 23, 2, 47, 1, 6, 8, 7, 7
Offset: 0

Author

Jean-François Alcover, Sep 18 2015

Keywords

Comments

Conway's triangle is listed by increasing couple products, with duplicate squares removed.

Examples

			Triangle begins:
{0,0},
{1,1},
{1,2},   {1,3},  {2,2},
{1,5},   {2,3},  {7,1},  {2,4}, {3,3},
{1,10}, {1,11},  {3,4}, {1,13}, {7,2},  {3,5},  {4,4},
{1,17},  {2,9}, {1,19},  {4,5}, {3,7}, {2,11}, {23,1}, {4,6}, {5,5},
...
The original triangle (adapted and truncated):
                           ...
                      5^2  ...
                 4^2  1*26 ...
            3^2  1*17 1*27 ...
        2^2 1*10 2*9  7*4  ...
    1^2 1*5 1*11 1*19 1*29 ...
0^2 1*2 2*3 3*4  4*5  5*6  ...
1^2 1*3 7*1 1*13 3*7  31*1 ...
    2^2 2*4 7*2  2*11 16*2 ...
        3^2 3*5  23*1 11*3 ...
            4^2  4*6  17*2 ...
                 5^2  5*7  ...
                      6^2  ...
                           ...
		

Programs

  • Mathematica
    f[0] = {0, 0}; f[32] = {16, 2}(* to speed up *); f[n_] := Do[c = n/b; If[b == c, Return[{b, b}]]; r1 = Reduce[r >= 0 && s >= 0 && c > 1 && b*r^2 + 1 == c*s^2, {r, s}, Integers]; If[r1 =!= False, Return[{b, c}]]; r2 = Reduce[r >= 0 && s >= 0 && r == 2x + 1 && s == 2y + 1 && b*r^2 + 2 == c *s^2, {r, s, x, y}, Integers]; If[r2 =!= False, Return[{b, c}]], {b, Divisors[n]}]; Table[Print["f(", n, ") = ", fn = f[n]]; fn, {n, 0, 49}] // Flatten
Showing 1-8 of 8 results.